These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29534448)

  • 1. Measurements by A LEAP-Based Virtual Glove for the Hand Rehabilitation.
    Placidi G; Cinque L; Polsinelli M; Spezialetti M
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29534448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overall design and implementation of the virtual glove.
    Placidi G; Avola D; Iacoviello D; Cinque L
    Comput Biol Med; 2013 Nov; 43(11):1927-40. PubMed ID: 24209938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Optical Based Hand Interaction for Virtual Reality.
    Worrallo AG; Hartley T
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4186-4197. PubMed ID: 34033541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games.
    Seo NJ; Arun Kumar J; Hur P; Crocher V; Motawar B; Lakshminarayanan K
    J Rehabil Res Dev; 2016; 53(3):321-34. PubMed ID: 27271199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patient-Therapist Cooperative Hand Telerehabilitation through a Novel Framework Involving the Virtual Glove System.
    Placidi G; Di Matteo A; Lozzi D; Polsinelli M; Theodoridou E
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A smart virtual glove for the hand telerehabilitation.
    Placidi G
    Comput Biol Med; 2007 Aug; 37(8):1100-7. PubMed ID: 17112497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
    Lahanas V; Loukas C; Georgiou K; Lababidi H; Al-Jaroudi D
    Surg Endosc; 2017 Dec; 31(12):5012-5023. PubMed ID: 28466361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight Soft Robotic Glove with Whole-Hand Finger Motion Tracking for Hand Rehabilitation in Virtual Reality.
    Li F; Chen J; Zhou Z; Xie J; Gao Z; Xiao Y; Dai P; Xu C; Wang X; Zhou Y
    Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment.
    Dimbwadyo-Terrer I; Trincado-Alonso F; de Los Reyes-Guzmán A; Aznar MA; Alcubilla C; Pérez-Nombela S; Del Ama-Espinosa A; Polonio-López B; Gil-Agudo Á
    Disabil Rehabil Assist Technol; 2016 Aug; 11(6):462-7. PubMed ID: 26181226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.
    Hamouda K; Rakheja S; Dewangan KN; Marcotte P
    Appl Ergon; 2018 Jan; 66():121-138. PubMed ID: 28958422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual reality-enhanced stroke rehabilitation.
    Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study.
    Iosa M; Morone G; Fusco A; Castagnoli M; Fusco FR; Pratesi L; Paolucci S
    Top Stroke Rehabil; 2015 Aug; 22(4):306-16. PubMed ID: 26258456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.
    Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C
    Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation.
    Lin CY; Tsai CM; Shih PC; Wu HC
    Technol Health Care; 2015; 24 Suppl 1():S97-103. PubMed ID: 26409543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Sensor Fusion Approach for Precise Hand Tracking in Virtual Reality-Based Human-Computer Interaction.
    Lei Y; Deng Y; Dong L; Li X; Li X; Su Z
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy logic-based mobile computing system for hand rehabilitation after neurological injury.
    Chiu YH; Chen TW; Chen YJ; Su CI; Hwang KS; Ho WH
    Technol Health Care; 2018; 26(1):17-27. PubMed ID: 29060950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Latency Haptic Open Glove for Immersive Virtual Reality Interaction.
    Sim D; Baek Y; Cho M; Park S; Sagar ASMS; Kim HS
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft Robotic Glove with Sensing and Force Feedback for Rehabilitation in Virtual Reality.
    Li F; Chen J; Ye G; Dong S; Gao Z; Zhou Y
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual-inertial hand motion tracking with robustness against occlusion, interference, and contact.
    Lee Y; Do W; Yoon H; Heo J; Lee W; Lee D
    Sci Robot; 2021 Sep; 6(58):eabe1315. PubMed ID: 34586835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.