BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29534564)

  • 1. Novel Theaflavin-Type Chlorogenic Acid Derivatives Identified in Black Tea.
    Zhang S; Yang C; Idehen E; Shi L; Lv L; Sang S
    J Agric Food Chem; 2018 Apr; 66(13):3402-3407. PubMed ID: 29534564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural identification of theaflavin trigallate and tetragallate from black tea using liquid chromatography/electrospray ionization tandem mass spectrometry.
    Chen H; Shurlknight K; Leung T; Sang S
    J Agric Food Chem; 2012 Oct; 60(43):10850-7. PubMed ID: 23066878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of HSCCC and Sephadex LH-20 methods An approach to isolation and purification of the main individual theaflavins from black tea.
    Yang C; Li D; Wan X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Jan; 861(1):140-4. PubMed ID: 18063426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Studies on antioxidant constituents from black tea].
    Su Y; Chen R; Chen Z
    Zhong Yao Cai; 2004 Oct; 27(10):732-3. PubMed ID: 15850353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea.
    Tong T; Liu YJ; Kang J; Zhang CM; Kang SG
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31408939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theaflavins from black tea affect growth, development, and motility in Dictyostelium discoideum.
    Ilacqua AN; Shettler JA; Wernke KM; Skalla JK; McQuade KJ
    Biochem Biophys Res Commun; 2017 Sep; 491(2):449-454. PubMed ID: 28711497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New dibenzotropolone derivatives characterized from black tea using LC/MS/MS.
    Sang S; Tian S; Stark RE; Yang CS; Ho CT
    Bioorg Med Chem; 2004 Jun; 12(11):3009-17. PubMed ID: 15142559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies.
    Glisan SL; Grove KA; Yennawar NH; Lambert JD
    Food Chem; 2017 Feb; 216():296-300. PubMed ID: 27596423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment.
    Yu Z; Liao Y; Zeng L; Dong F; Watanabe N; Yang Z
    Food Res Int; 2020 Mar; 129():108842. PubMed ID: 32036878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of noncovalent complexes in some natural extracts: Ceylon tea and mate extracts.
    Crotti S; D'Aronco S; Moracci L; Tisato F; Porchia M; Mattoli L; Burico M; Bedont S; Traldi P; Agostini M
    J Mass Spectrom; 2020 Jul; 55(7):e4459. PubMed ID: 31663260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theaflavins in black tea and catechins in green tea are equally effective antioxidants.
    Leung LK; Su Y; Chen R; Zhang Z; Huang Y; Chen ZY
    J Nutr; 2001 Sep; 131(9):2248-51. PubMed ID: 11533262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical strategy coupled to chemometrics to differentiate Camellia sinensis tea types based on phenolic composition, alkaloids, and amino acids.
    Jiang H; Zhang M; Wang D; Yu F; Zhang N; Song C; Granato D
    J Food Sci; 2020 Oct; 85(10):3253-3263. PubMed ID: 32856300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant properties of fractions and polyphenol constituents from green, oolong and black teas.
    Xie B; Shi H; Chen Q; Ho CT
    Proc Natl Sci Counc Repub China B; 1993 Apr; 17(2):77-84. PubMed ID: 7809277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Black tea polyphenol theaflavin as promising antioxidant and potential copper chelator.
    Sharma N; Phan HT; Chikae M; Takamura Y; Azo-Oussou AF; Vestergaard MC
    J Sci Food Agric; 2020 May; 100(7):3126-3135. PubMed ID: 32086808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved.
    Chung JY; Huang C; Meng X; Dong Z; Yang CS
    Cancer Res; 1999 Sep; 59(18):4610-7. PubMed ID: 10493515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenolic promiscuity in the cell nucleus--epigallocatechingallate (EGCG) and theaflavin-3,3'-digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA.
    Mikutis G; Karaköse H; Jaiswal R; LeGresley A; Islam T; Fernandez-Lahore M; Kuhnert N
    Food Funct; 2013 Feb; 4(2):328-37. PubMed ID: 23172122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of the black tea pigment theaflavin during enzymatic oxidation of tea catechins.
    Li Y; Shibahara A; Matsuo Y; Tanaka T; Kouno I
    J Nat Prod; 2010 Jan; 73(1):33-9. PubMed ID: 20014758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphenols extracted from black tea (Camellia sinensis) residue by hot-compressed water and their inhibitory effect on pancreatic lipase in vitro.
    Yuda N; Tanaka M; Suzuki M; Asano Y; Ochi H; Iwatsuki K
    J Food Sci; 2012 Dec; 77(12):H254-61. PubMed ID: 23106349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products.
    Lee Y; Lin Z; Du G; Deng Z; Yang H; Bai W
    J Sci Food Agric; 2015 Oct; 95(13):2686-92. PubMed ID: 25407933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product.
    Jhoo JW; Lo CY; Li S; Sang S; Ang CY; Heinze TM; Ho CT
    J Agric Food Chem; 2005 Jul; 53(15):6146-50. PubMed ID: 16029009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.