These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 29534717)
1. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717 [TBL] [Abstract][Full Text] [Related]
2. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing. Wu Z; Chen Z; Gao X; Li J; Shang G Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Assisted Multiplex Base Editing System in Sun J; Lu LB; Liang TX; Yang LR; Wu JP Front Bioeng Biotechnol; 2020; 8():905. PubMed ID: 32850749 [No Abstract] [Full Text] [Related]
4. CRISPR-Cas9 Editing of the Synthesis of Biodegradable Polyesters Polyhydroxyalkanaotes (PHA) in Pseudomonas putida KT2440. Liu S; Narancic T; Davis C; O'Connor KE Methods Mol Biol; 2022; 2397():341-358. PubMed ID: 34813072 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9-Based Counterselection Boosts Recombineering Efficiency in Pseudomonas putida. Aparicio T; de Lorenzo V; Martínez-García E Biotechnol J; 2018 May; 13(5):e1700161. PubMed ID: 29058367 [TBL] [Abstract][Full Text] [Related]
6. [Repair of Double-Stranded DNA Breaks Generated by CRISPR-Cas9 in Pseudomonas putida KT2440]. Sharaev N; Chacon-Machado L; Musharova O; Savitskaya E; Severinov K Mol Biol (Mosk); 2022; 56(6):914. PubMed ID: 36475478 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells. Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413 [TBL] [Abstract][Full Text] [Related]
8. CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440. Kim SK; Yoon PK; Kim SJ; Woo SG; Rha E; Lee H; Yeom SJ; Kim H; Lee DH; Lee SG Microb Biotechnol; 2020 Jan; 13(1):210-221. PubMed ID: 30793496 [TBL] [Abstract][Full Text] [Related]
9. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843 [TBL] [Abstract][Full Text] [Related]
10. [The new generation tool for CRISPR genome editing: CRISPR/Cpf1]. Yang F; Li Y Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):361-371. PubMed ID: 28941336 [TBL] [Abstract][Full Text] [Related]
11. Targetron-Assisted Delivery of Exogenous DNA Sequences into Velázquez E; Al-Ramahi Y; Tellechea-Luzardo J; Krasnogor N; de Lorenzo V ACS Synth Biol; 2021 Oct; 10(10):2552-2565. PubMed ID: 34601868 [TBL] [Abstract][Full Text] [Related]
12. The Escherichia coli rhamnose promoter rhaP(BAD) is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Jeske M; Altenbuchner J Appl Microbiol Biotechnol; 2010 Feb; 85(6):1923-33. PubMed ID: 19789867 [TBL] [Abstract][Full Text] [Related]
13. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. Cook TB; Rand JM; Nurani W; Courtney DK; Liu SA; Pfleger BF J Ind Microbiol Biotechnol; 2018 Jul; 45(7):517-527. PubMed ID: 29299733 [TBL] [Abstract][Full Text] [Related]
14. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Mougiakos I; Mohanraju P; Bosma EF; Vrouwe V; Finger Bou M; Naduthodi MIS; Gussak A; Brinkman RBL; van Kranenburg R; van der Oost J Nat Commun; 2017 Nov; 8(1):1647. PubMed ID: 29162801 [TBL] [Abstract][Full Text] [Related]
15. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274 [TBL] [Abstract][Full Text] [Related]
16. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Zhou Y; Lin L; Wang H; Zhang Z; Zhou J; Jiao N Commun Biol; 2020 Mar; 3(1):98. PubMed ID: 32139868 [TBL] [Abstract][Full Text] [Related]
17. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Zhang J; Zong W; Hong W; Zhang ZT; Wang Y Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750 [TBL] [Abstract][Full Text] [Related]
18. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase. Li K; Cai D; Wang Z; He Z; Chen S Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178 [No Abstract] [Full Text] [Related]
19. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. Gong T; Xu X; Dang Y; Kong A; Wu Y; Liang P; Wang S; Yu H; Xu P; Yang C Sci Total Environ; 2018 Jul; 628-629():1258-1265. PubMed ID: 30045547 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Martínez-García E; Nikel PI; Aparicio T; de Lorenzo V Microb Cell Fact; 2014 Nov; 13():159. PubMed ID: 25384394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]