These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29534764)

  • 1. Online mapping of EMG signals into kinematics by autoencoding.
    Vujaklija I; Shalchyan V; Kamavuako EN; Jiang N; Marateb HR; Farina D
    J Neuroeng Rehabil; 2018 Mar; 15(1):21. PubMed ID: 29534764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees.
    Jiang N; Rehbaum H; Vujaklija I; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):501-10. PubMed ID: 23996582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
    Jiang N; Vujaklija I; Rehbaum H; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):549-58. PubMed ID: 24235278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression.
    Smith LH; Kuiken TA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Electromyogr Kinesiol; 2014 Oct; 24(5):770-7. PubMed ID: 25048642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses.
    Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D
    J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time simultaneous and proportional myoelectric control using intramuscular EMG.
    Smith LH; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of speed-accuracy tradeoff between linear and nonlinear filtering algorithms for myocontrol.
    Borish CN; Feinman A; Bertucco M; Ramsy NG; Sanger TD
    J Neurophysiol; 2018 Jun; 119(6):2030-2035. PubMed ID: 29384451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure.
    Wurth SM; Hargrove LJ
    J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms.
    Muceli S; Jiang N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees.
    Jiang N; Vest-Nielsen JL; Muceli S; Farina D
    J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support vector regression for improved real-time, simultaneous myoelectric control.
    Ameri A; Kamavuako EN; Scheme EJ; Englehart KB; Parker PA
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1198-209. PubMed ID: 24846649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.
    Scheme E; Lock B; Hargrove L; Hill W; Kuruganti U; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):149-57. PubMed ID: 23475378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing online wrist and forearm EMG-based control using a rhythm game-inspired evaluation environment.
    Meredith R; Eddy E; Bateman S; Scheme E
    J Neural Eng; 2024 Aug; 21(4):. PubMed ID: 39079541
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.