These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29534892)

  • 1. Pros and cons of different therapeutic antibody formats for recombinant antivenom development.
    Laustsen AH; María Gutiérrez J; Knudsen C; Johansen KH; Bermúdez-Méndez E; Cerni FA; Jürgensen JA; Ledsgaard L; Martos-Esteban A; Øhlenschlæger M; Pus U; Andersen MR; Lomonte B; Engmark M; Pucca MB
    Toxicon; 2018 May; 146():151-175. PubMed ID: 29534892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering and design considerations for next-generation snakebite antivenoms.
    Knudsen C; Ledsgaard L; Dehli RI; Ahmadi S; Sørensen CV; Laustsen AH
    Toxicon; 2019 Sep; 167():67-75. PubMed ID: 31173790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims.
    Kini RM; Sidhu SS; Laustsen AH
    Toxins (Basel); 2018 Dec; 10(12):. PubMed ID: 30551565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotechnological Trends in Spider and Scorpion Antivenom Development.
    Laustsen AH; Solà M; Jappe EC; Oscoz S; Lauridsen LP; Engmark M
    Toxins (Basel); 2016 Jul; 8(8):. PubMed ID: 27455327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of protective agent against Hottentotta saulcyi venom using camelid single-domain antibody.
    Darvish M; Behdani M; Shokrgozar MA; Pooshang-Bagheri K; Shahbazzadeh D
    Mol Immunol; 2015 Dec; 68(2 Pt B):412-20. PubMed ID: 26468036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. History of Envenoming Therapy and Current Perspectives.
    Pucca MB; Cerni FA; Janke R; Bermúdez-Méndez E; Ledsgaard L; Barbosa JE; Laustsen AH
    Front Immunol; 2019; 10():1598. PubMed ID: 31354735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camelid antivenom development and potential in vivo neutralization of Hottentotta saulcyi scorpion venom.
    Darvish M; Ebrahimi SA; Shahbazzadeh D; Bagheri KP; Behdani M; Shokrgozar MA
    Toxicon; 2016 Apr; 113():70-5. PubMed ID: 26809016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and expression of recombinant toxins from Mexican scorpions of the genus Centruroides for production of antivenoms.
    Jiménez-Vargas JM; Quintero-Hernández V; González-Morales L; Ortiz E; Possani LD
    Toxicon; 2017 Mar; 128():5-14. PubMed ID: 28126552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Venomics of Bungarus caeruleus (Indian krait): Comparable venom profiles, variable immunoreactivities among specimens from Sri Lanka, India and Pakistan.
    Oh AMF; Tan CH; Ariaranee GC; Quraishi N; Tan NH
    J Proteomics; 2017 Jul; 164():1-18. PubMed ID: 28476572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches.
    Liu CC; You CH; Wang PJ; Yu JS; Huang GJ; Liu CH; Hsieh WC; Lin CC
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006138. PubMed ID: 29244815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of camelid IgG for antivenom development: Immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment.
    Cook DA; Samarasekara CL; Wagstaff SC; Kinne J; Wernery U; Harrison RA
    Toxicon; 2010 Sep; 56(4):596-603. PubMed ID: 20547172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guiding recombinant antivenom development by omics technologies.
    Laustsen AH
    N Biotechnol; 2018 Oct; 45():19-27. PubMed ID: 28552814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of IgG(T) and IgGa isotypes obtained from arachnidic antivenom to neutralize toxic activities of Loxosceles gaucho, Phoneutria nigriventer and Tityus serrulatus venoms.
    Toro AF; Malta MB; Soares SL; Da Rocha GC; da Silva Lira M; De Oliveira TA; Takehara HA; Lopes-Ferreira M; Santoro ML; Guidolin R; Gondo Higashi H; Fernandes I; Barbaro KC
    Toxicon; 2006 Nov; 48(6):649-61. PubMed ID: 16979205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the neurotoxic and myotoxic effects of two Moroccan scorpion venoms and their neutralization by experimental polyclonal antivenom.
    Oukkache N; Ahmad Rusmili MR; Othman I; Ghalim N; Chgoury F; Boussadda L; Elmdaghri N; Sabatier JM
    Life Sci; 2015 Mar; 124():1-7. PubMed ID: 25623852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Recombinant antibodies: towards a new generation of antivenoms?].
    Aubrey N; Muzard J; Juste M; Billiald P
    J Soc Biol; 2006; 200(4):345-54. PubMed ID: 17652970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom.
    Tan CH; Tan KY; Tan NH
    J Proteomics; 2016 Jul; 144():33-8. PubMed ID: 27282922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming.
    Hmila I; Cosyns B; Tounsi H; Roosens B; Caveliers V; Abderrazek RB; Boubaker S; Muyldermans S; El Ayeb M; Bouhaouala-Zahar B; Lahoutte T
    Toxicol Appl Pharmacol; 2012 Oct; 264(2):222-31. PubMed ID: 22968189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-reactivity and cross-immunomodulation between venoms of the snakes Bothrops asper, Crotalus simus and Lachesis stenophrys, and its effect in the production of polyspecific antivenom for Central America.
    Arroyo C; Solano S; Segura Á; Herrera M; Estrada R; Villalta M; Vargas M; Gutiérrez JM; León G
    Toxicon; 2017 Nov; 138():43-48. PubMed ID: 28803057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cost of Manufacturing for Recombinant Snakebite Antivenoms.
    Jenkins TP; Laustsen AH
    Front Bioeng Biotechnol; 2020; 8():703. PubMed ID: 32766215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput immuno-profiling of mamba (Dendroaspis) venom toxin epitopes using high-density peptide microarrays.
    Engmark M; Andersen MR; Laustsen AH; Patel J; Sullivan E; de Masi F; Hansen CS; Kringelum JV; Lomonte B; Gutiérrez JM; Lund O
    Sci Rep; 2016 Nov; 6():36629. PubMed ID: 27824133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.