These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29535040)
1. Correlation of solid dosage porosity and tensile strength with acoustically extracted mechanical properties. Xu X; Mack C; Cleland ZJ; Vallabh CKP; Dave VS; Cetinkaya C Int J Pharm; 2018 May; 542(1-2):153-163. PubMed ID: 29535040 [TBL] [Abstract][Full Text] [Related]
2. Early detection of capping risk in pharmaceutical compacts. Xu X; Vallabh CKP; Hoag SW; Dave VS; Cetinkaya C Int J Pharm; 2018 Dec; 553(1-2):338-348. PubMed ID: 30367987 [TBL] [Abstract][Full Text] [Related]
3. Effects of compaction pressure, speed and punch head profile on the ultrasonically-extracted physical properties of pharmaceutical compacts. Xu X; Coskunturk Y; Dave VS; Kuriyilel JV; Wright MF; Dave RH; Cetinkaya C Int J Pharm; 2020 Feb; 575():118993. PubMed ID: 31884061 [TBL] [Abstract][Full Text] [Related]
4. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements. Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825 [TBL] [Abstract][Full Text] [Related]
5. Tensile and shear methods for measuring strength of bilayer tablets. Chang SY; Li JX; Sun CC Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920 [TBL] [Abstract][Full Text] [Related]
6. Acoustic assessment of mean grain size in pharmaceutical compacts. Smith CJ; Stephens JD; Hancock BC; Vahdat AS; Cetinkaya C Int J Pharm; 2011 Oct; 419(1-2):137-46. PubMed ID: 21821106 [TBL] [Abstract][Full Text] [Related]
7. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms. Akseli I; Hancock BC; Cetinkaya C Int J Pharm; 2009 Jul; 377(1-2):35-44. PubMed ID: 19426791 [TBL] [Abstract][Full Text] [Related]
8. Predictions of tensile strength of binary tablets using linear and power law mixing rules. Michrafy A; Michrafy M; Kadiri MS; Dodds JA Int J Pharm; 2007 Mar; 333(1-2):118-26. PubMed ID: 17097245 [TBL] [Abstract][Full Text] [Related]
9. Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering. Sun CC Pharm Res; 2017 May; 34(5):918-928. PubMed ID: 27380192 [TBL] [Abstract][Full Text] [Related]
10. A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose. Mužíková J; Sináglová P Ceska Slov Farm; 2013 Jun; 62(3):127-31. PubMed ID: 23961814 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared chemical imaging (NIR-CI) as a process monitoring solution for a production line of roll compaction and tableting. Khorasani M; Amigo JM; Sun CC; Bertelsen P; Rantanen J Eur J Pharm Biopharm; 2015 Jun; 93():293-302. PubMed ID: 25917640 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic determination of Young's moduli of the coat and core materials of a drug tablet. Akseli I; Becker DC; Cetinkaya C Int J Pharm; 2009 Mar; 370(1-2):17-25. PubMed ID: 19059326 [TBL] [Abstract][Full Text] [Related]
13. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach. Agrawal A; Dudhedia M; Deng W; Shepard K; Zhong L; Povilaitis E; Zimny E AAPS PharmSciTech; 2016 Feb; 17(1):214-32. PubMed ID: 26757898 [TBL] [Abstract][Full Text] [Related]
14. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology. Podczeck F; Drake KR; Newton JM Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of rapidly disintegrating tablets prepared by a direct compression method. Bi YX; Sunada H; Yonezawa Y; Danjo K Drug Dev Ind Pharm; 1999 May; 25(5):571-81. PubMed ID: 10219525 [TBL] [Abstract][Full Text] [Related]
16. Effect of Porosity on Strength Distribution of Microcrystalline Cellulose. Keleṣ Ö; Barcenas NP; Sprys DH; Bowman KJ AAPS PharmSciTech; 2015 Dec; 16(6):1455-64. PubMed ID: 26022545 [TBL] [Abstract][Full Text] [Related]
17. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate. Nordström J; Alderborn G J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760 [TBL] [Abstract][Full Text] [Related]
18. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets. ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158 [TBL] [Abstract][Full Text] [Related]
19. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction. Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239 [TBL] [Abstract][Full Text] [Related]
20. Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes. Escotet-Espinoza MS; Vadodaria S; Singh R; Muzzio FJ; Ierapetritou MG Int J Pharm; 2018 May; 543(1-2):274-287. PubMed ID: 29567195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]