These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29535224)

  • 1. Climate warming enhances snow avalanche risk in the Western Himalayas.
    Ballesteros-Cánovas JA; Trappmann D; Madrigal-González J; Eckert N; Stoffel M
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3410-3415. PubMed ID: 29535224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upslope migration of snow avalanches in a warming climate.
    Giacona F; Eckert N; Corona C; Mainieri R; Morin S; Stoffel M; Martin B; Naaim M
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34697237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tree-ring reconstruction of snow avalanche activity: Does avalanche path selection matter?
    de Bouchard d'Aubeterre G; Favillier A; Mainieri R; Lopez Saez J; Eckert N; Saulnier M; Peiry JL; Stoffel M; Corona C
    Sci Total Environ; 2019 Sep; 684():496-508. PubMed ID: 31154222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate drivers of large magnitude snow avalanche years in the U.S. northern Rocky Mountains.
    Peitzsch EH; Pederson GT; Birkeland KW; Hendrikx J; Fagre DB
    Sci Rep; 2021 May; 11(1):10032. PubMed ID: 33976297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Climate Change on Avalanche Accidents and Survival.
    Strapazzon G; Schweizer J; Chiambretti I; Brodmann Maeder M; Brugger H; Zafren K
    Front Physiol; 2021; 12():639433. PubMed ID: 33912070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-absorbing impurities in snow of the Indian Western Himalayas: impact on snow albedo, radiative forcing, and enhanced melting.
    Thind PS; Chandel KK; Sharma SK; Mandal TK; John S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7566-7578. PubMed ID: 30663015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dealing with the white death: avalanche risk management for traffic routes.
    Rheinberger CM; Bründl M; Rhyner J
    Risk Anal; 2009 Jan; 29(1):76-94. PubMed ID: 18808393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occasional but severe: Past debris flows and snow avalanches in the Helmos Mts. (Greece) reconstructed from tree-ring records.
    Tichavský R; Fabiánová A; Koutroulis A; Spálovský V
    Sci Total Environ; 2022 Nov; 848():157759. PubMed ID: 35931167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-Site Treatment of Snow Avalanche Victims: From Bench to Mountainside.
    Strapazzon G; Brugger H
    High Alt Med Biol; 2018 Dec; 19(4):307-315. PubMed ID: 30183350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of changing climate and topography on snow cover variability of Parvati River Basin, western Himalayas, India.
    Kumar D; Thind PS; Sharma T
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1007-1025. PubMed ID: 38036904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.
    Hollesen J; Buchwal A; Rachlewicz G; Hansen BU; Hansen MO; Stecher O; Elberling B
    Glob Chang Biol; 2015 Jun; 21(6):2410-23. PubMed ID: 25788025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-avalanche-related snow immersion deaths: tree well and deep snow immersion asphyxiation.
    Van Tilburg C
    Wilderness Environ Med; 2010 Sep; 21(3):257-61. PubMed ID: 20832705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua.
    Stoffel M; Hitz OM
    Tree Physiol; 2008 Nov; 28(11):1713-20. PubMed ID: 18765376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snow avalanches are a primary climate-linked driver of mountain ungulate populations.
    White KS; Hood E; Wolken GJ; Peitzsch EH; Bühler Y; Wikstrom Jones K; Darimont CT
    Commun Biol; 2024 Apr; 7(1):423. PubMed ID: 38684895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas.
    Rohrer M; Salzmann N; Stoffel M; Kulkarni AV
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S60-70. PubMed ID: 24268383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.
    Roubík K; Sieger L; Sykora K
    PLoS One; 2015; 10(12):e0144332. PubMed ID: 26666523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes.
    Ligneau C; Sovilla B; Gaume J
    PLoS One; 2022; 17(2):e0264033. PubMed ID: 35167595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
    Bokhorst S; Bjerke JW; Davey MP; Taulavuori K; Taulavuori E; Laine K; Callaghan TV; Phoenix GK
    Physiol Plant; 2010 Oct; 140(2):128-40. PubMed ID: 20497369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two 2-D numerical models for snow avalanche simulation.
    Martini M; Baggio T; D'Agostino V
    Sci Total Environ; 2023 Oct; 896():165221. PubMed ID: 37392885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing livestock snow disaster risk in the Qinghai-Tibetan Plateau due to warming and socioeconomic development.
    Ye T; Liu W; Chen S; Chen D; Shi P; Wang A; Li Y
    Sci Total Environ; 2022 Mar; 813():151869. PubMed ID: 34826478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.