BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 29535314)

  • 1. Benchmarking common quantification strategies for large-scale phosphoproteomics.
    Hogrebe A; von Stechow L; Bekker-Jensen DB; Weinert BT; Kelstrup CD; Olsen JV
    Nat Commun; 2018 Mar; 9(1):1045. PubMed ID: 29535314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking stable isotope labeling based quantitative proteomics.
    Altelaar AF; Frese CK; Preisinger C; Hennrich ML; Schram AW; Timmers HT; Heck AJ; Mohammed S
    J Proteomics; 2013 Aug; 88():14-26. PubMed ID: 23085607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of elemental mass spectrometry in phosphoproteomic applications.
    Maes E; Tirez K; Baggerman G; Valkenborg D; Schoofs L; Encinar JR; Mertens I
    Mass Spectrom Rev; 2016; 35(3):350-60. PubMed ID: 25139451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide Labeling Using Isobaric Tagging Reagents for Quantitative Phosphoproteomics.
    Cheng L; Pisitkun T; Knepper MA; Hoffert JD
    Methods Mol Biol; 2016; 1355():53-70. PubMed ID: 26584918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS3-IDQ: Utilizing MS3 Spectra beyond Quantification Yields Increased Coverage of the Phosphoproteome in Isobaric Tag Experiments.
    Berberich MJ; Paulo JA; Everley RA
    J Proteome Res; 2018 Apr; 17(4):1741-1747. PubMed ID: 29461835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass Spectrometry-Based Proteomics for Analysis of Hydrophilic Phosphopeptides.
    Tsai CF; Smith JS; Eiger DS; Martin K; Liu T; Smith RD; Shi T; Rajagopal S; Jacobs JM
    Methods Mol Biol; 2021; 2259():247-257. PubMed ID: 33687720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides.
    Tsai CF; Smith JS; Krajewski K; Zhao R; Moghieb AM; Nicora CD; Xiong X; Moore RJ; Liu T; Smith RD; Jacobs JM; Rajagopal S; Shi T
    Anal Chem; 2019 Sep; 91(18):11606-11613. PubMed ID: 31418558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Assessment of Quantification Methods for Tumor Tissue Phosphoproteomics.
    Zhang Y; Dreyer B; Govorukhina N; Heberle AM; Končarević S; Krisp C; Opitz CA; Pfänder P; Bischoff R; Schlüter H; Kwiatkowski M; Thedieck K; Horvatovich PL
    Anal Chem; 2022 Aug; 94(31):10893-10906. PubMed ID: 35880733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for high-throughput semi-automated label-free- or TMT-based phosphoproteome profiling.
    Koenig C; Martinez-Val A; Naicker P; Stoychev S; Jordaan J; Olsen JV
    STAR Protoc; 2023 Sep; 4(3):102536. PubMed ID: 37659085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal analytical strategies for sensitive and quantitative phosphoproteomics using TMT-based multiplexing.
    Koenig C; Martinez-Val A; Franciosa G; Olsen JV
    Proteomics; 2022 Oct; 22(19-20):e2100245. PubMed ID: 35713889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Coverage of Global Protein Expression and Phosphorylation in Breast Tumor Cell Lines Using TMT 10-plex Isobaric Labeling.
    Huang FK; Zhang G; Lawlor K; Nazarian A; Philip J; Tempst P; Dephoure N; Neubert TA
    J Proteome Res; 2017 Mar; 16(3):1121-1132. PubMed ID: 28102081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry.
    Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.