BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 29535386)

  • 1. Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9.
    Durr J; Papareddy R; Nakajima K; Gutierrez-Marcos J
    Sci Rep; 2018 Mar; 8(1):4443. PubMed ID: 29535386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana.
    Tsutsui H; Higashiyama T
    Plant Cell Physiol; 2017 Jan; 58(1):46-56. PubMed ID: 27856772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit.
    Ordon J; Gantner J; Kemna J; Schwalgun L; Reschke M; Streubel J; Boch J; Stuttmann J
    Plant J; 2017 Jan; 89(1):155-168. PubMed ID: 27579989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing.
    Gao X; Chen J; Dai X; Zhang D; Zhao Y
    Plant Physiol; 2016 Jul; 171(3):1794-800. PubMed ID: 27208253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.
    Zhou H; Liu B; Weeks DP; Spalding MH; Yang B
    Nucleic Acids Res; 2014; 42(17):10903-14. PubMed ID: 25200087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in
    Feng Z; Zhang Z; Hua K; Gao X; Mao Y; Botella JR; Zhu JK
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize.
    Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F
    Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing.
    Ryder P; McHale M; Fort A; Spillane C
    Plant Cell Rep; 2017 Jun; 36(6):1005-1008. PubMed ID: 28289885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis.
    Zhang Z; Mao Y; Ha S; Liu W; Botella JR; Zhu JK
    Plant Cell Rep; 2016 Jul; 35(7):1519-33. PubMed ID: 26661595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9.
    Yimam YT; Zhou J; Akher SA; Zheng X; Qi Y; Zhang Y
    Methods Mol Biol; 2021; 2238():205-219. PubMed ID: 33471333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome editing of wild strawberry genes, vector development and validation.
    Zhou J; Wang G; Liu Z
    Plant Biotechnol J; 2018 Nov; 16(11):1868-1877. PubMed ID: 29577545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Combo-mediated orthogonal genome editing and transcriptional activation for plant breeding.
    Pan C; Qi Y
    Nat Protoc; 2023 Jun; 18(6):1760-1794. PubMed ID: 37085666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-Based Genome Editing Toolbox for Arabidopsis thaliana.
    Miki D; Zinta G; Zhang W; Peng F; Feng Z; Zhu JK
    Methods Mol Biol; 2021; 2200():121-146. PubMed ID: 33175375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 16. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba.
    Triozzi PM; Schmidt HW; Dervinis C; Kirst M; Conde D
    Tree Physiol; 2021 Nov; 41(11):2216-2227. PubMed ID: 33960379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosomal deletions mediated by CRISPR/Cas9 in Helicoverpa armigera.
    Jin MH; Xiao YT; Cheng Y; Hu J; Xue CB; Wu KM
    Insect Sci; 2019 Dec; 26(6):1029-1036. PubMed ID: 29359508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants.
    Osakabe Y; Watanabe T; Sugano SS; Ueta R; Ishihara R; Shinozaki K; Osakabe K
    Sci Rep; 2016 May; 6():26685. PubMed ID: 27226176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.