These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 29535583)
1. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography when Assessing Muscle Excitation during Functional Movements. Colyer SL; McGuigan PM J Sports Sci Med; 2018 Mar; 17(1):101-109. PubMed ID: 29535583 [TBL] [Abstract][Full Text] [Related]
2. Measurement of EMG activity with textile electrodes embedded into clothing. Finni T; Hu M; Kettunen P; Vilavuo T; Cheng S Physiol Meas; 2007 Nov; 28(11):1405-19. PubMed ID: 17978424 [TBL] [Abstract][Full Text] [Related]
3. Textile electromyography electrodes reveal differences in lower limb muscle activation during loaded squats when comparing fixed and free barbell movement paths. Svensson F; Aasa U; Strong A Front Sports Act Living; 2022; 4():1021323. PubMed ID: 36524056 [TBL] [Abstract][Full Text] [Related]
4. A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study. Alizadeh-Meghrazi M; Sidhu G; Jain S; Stone M; Eskandarian L; Toossi A; Popovic MR Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062627 [TBL] [Abstract][Full Text] [Related]
5. Performance of electromyography recorded using textile electrodes in classifying arm movements. Li G; Geng Y; Tao D; Zhou P Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4243-6. PubMed ID: 22255276 [TBL] [Abstract][Full Text] [Related]
6. Peak and average rectified EMG measures: which method of data reduction should be used for assessing core training exercises? Hibbs AE; Thompson KG; French DN; Hodgson D; Spears IR J Electromyogr Kinesiol; 2011 Feb; 21(1):102-11. PubMed ID: 20655245 [TBL] [Abstract][Full Text] [Related]
7. Reliability of Measuring Lower-Limb-Muscle Electromyography Activity Ratio in Activities of Daily Living With Electrodes Embedded in the Clothing. Bengs D; Jeglinsky I; Surakka J; Hellsten T; Ring J; Kettunen J J Sport Rehabil; 2017 Jul; 26(4):. PubMed ID: 28422571 [TBL] [Abstract][Full Text] [Related]
8. EMG, heart rate, and accelerometer as estimators of energy expenditure in locomotion. Tikkanen O; Kärkkäinen S; Haakana P; Kallinen M; Pullinen T; Finni T Med Sci Sports Exerc; 2014 Sep; 46(9):1831-9. PubMed ID: 24504428 [TBL] [Abstract][Full Text] [Related]
9. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. Muyor JM; Martín-Fuentes I; Rodríguez-Ridao D; Antequera-Vique JA PLoS One; 2020; 15(4):e0230841. PubMed ID: 32236133 [TBL] [Abstract][Full Text] [Related]
10. EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization. Kim S; Lee S; Jeong W Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086662 [TBL] [Abstract][Full Text] [Related]
11. High-density EMG E-textile systems for the control of active prostheses. Farina D; Lorrain T; Negro F; Jiang N Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3591-3. PubMed ID: 21096838 [TBL] [Abstract][Full Text] [Related]
13. A method for positioning electrodes during surface EMG recordings in lower limb muscles. Rainoldi A; Melchiorri G; Caruso I J Neurosci Methods; 2004 Mar; 134(1):37-43. PubMed ID: 15102501 [TBL] [Abstract][Full Text] [Related]
14. The Effects of Verbal Instructions on Lower Limb Muscles' Excitation in Back-Squat. Coratella G; Tornatore G; Longo S; Borrelli M; Doria C; Esposito F; Cè E Res Q Exerc Sport; 2022 Jun; 93(2):429-435. PubMed ID: 33170116 [TBL] [Abstract][Full Text] [Related]
15. Pre-stretching of the Hamstrings Before Squatting Acutely Increases Biceps Femoris Thickness Without Impairing Exercise Performance. Trindade TB; Neto LO; Pita JCN; Tavares VDO; Dantas PMS; Schoenfeld BJ; Prestes J Front Physiol; 2020; 11():769. PubMed ID: 32733274 [No Abstract] [Full Text] [Related]
16. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection. Kim H; Kim S; Lim D; Jeong W Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808240 [TBL] [Abstract][Full Text] [Related]
17. Dry Epidermal Electrodes Can Provide Long-Term High Fidelity Electromyography for Limited Dynamic Lower Limb Movements. Li J; Wang P; Huang HJ Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867264 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Sleeve Pattern and Fit on E-Textile Electromyography (EMG) Electrode Performance in Smart Clothing Design. Goncu-Berk G; Tuna BG Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451070 [TBL] [Abstract][Full Text] [Related]
19. A Comparison of Gluteus Maximus, Biceps Femoris, and Vastus Lateralis Electromyographic Activity in the Back Squat and Barbell Hip Thrust Exercises. Contreras B; Vigotsky AD; Schoenfeld BJ; Beardsley C; Cronin J J Appl Biomech; 2015 Dec; 31(6):452-8. PubMed ID: 26214739 [TBL] [Abstract][Full Text] [Related]
20. Normalization of the electromyography amplitude during a multiple-set resistance training protocol: Reliability and differences between approaches. Lanza MB; Lacerda LT; Gurgel Simões M; Martins-Costa HC; Diniz RC; Chagas MH; Lima FV J Electromyogr Kinesiol; 2023 Feb; 68():102724. PubMed ID: 36399915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]