BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29535976)

  • 1. Hypoacylated LPS from Foodborne Pathogen
    Korneev KV; Kondakova AN; Sviriaeva EN; Mitkin NA; Palmigiano A; Kruglov AA; Telegin GB; Drutskaya MS; Sturiale L; Garozzo D; Nedospasov SA; Knirel YA; Kuprash DV
    Front Cell Infect Microbiol; 2018; 8():58. PubMed ID: 29535976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of Toll-like receptors by Burkholderia pseudomallei.
    West TE; Ernst RK; Jansson-Hutson MJ; Skerrett SJ
    BMC Immunol; 2008 Aug; 9():46. PubMed ID: 18691413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Campylobacter jejuni lipooligosaccharide sialylation, phosphorylation, and amide/ester linkage modifications fine-tune human Toll-like receptor 4 activation.
    Stephenson HN; John CM; Naz N; Gundogdu O; Dorrell N; Wren BW; Jarvis GA; Bajaj-Elliott M
    J Biol Chem; 2013 Jul; 288(27):19661-72. PubMed ID: 23629657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling through Toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes.
    Rathinam VA; Appledorn DM; Hoag KA; Amalfitano A; Mansfield LS
    Infect Immun; 2009 Jun; 77(6):2499-507. PubMed ID: 19332531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia.
    Di Lorenzo F; Kubik Ł; Oblak A; Lorè NI; Cigana C; Lanzetta R; Parrilli M; Hamad MA; De Soyza A; Silipo A; Jerala R; Bragonzi A; Valvano MA; Martín-Santamaría S; Molinaro A
    J Biol Chem; 2015 Aug; 290(35):21305-19. PubMed ID: 26160169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered linkage of hydroxyacyl chains in lipid A of Campylobacter jejuni reduces TLR4 activation and antimicrobial resistance.
    van Mourik A; Steeghs L; van Laar J; Meiring HD; Hamstra HJ; van Putten JP; Wösten MM
    J Biol Chem; 2010 May; 285(21):15828-36. PubMed ID: 20351099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An agonistic anti-Toll-like receptor 4 monoclonal antibody as an effective adjuvant for cancer immunotherapy.
    Tsukamoto H; Kubota K; Shichiku A; Maekawa M; Mano N; Yagita H; Ohta S; Tomioka Y
    Immunology; 2019 Oct; 158(2):136-149. PubMed ID: 31515801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential activation of human TLR4 by Escherichia coli and Shigella flexneri 2a lipopolysaccharide: combined effects of lipid A acylation state and TLR4 polymorphisms on signaling.
    Rallabhandi P; Awomoyi A; Thomas KE; Phalipon A; Fujimoto Y; Fukase K; Kusumoto S; Qureshi N; Sztein MB; Vogel SN
    J Immunol; 2008 Jan; 180(2):1139-47. PubMed ID: 18178854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and serological characterization of Campylobacter jejuni lipopolysaccharides with deviating core and lipid A structures.
    Moran AP
    FEMS Immunol Med Microbiol; 1995 Apr; 11(2):121-30. PubMed ID: 7640672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoactive intestinal peptide suppresses toll-like receptor 4 expression in macrophages via Akt1 reducing their responsiveness to lipopolysaccharide.
    Arranz A; Androulidaki A; Zacharioudaki V; Martinez C; Margioris AN; Gomariz RP; Tsatsanis C
    Mol Immunol; 2008 May; 45(10):2970-80. PubMed ID: 18336909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan.
    Doz E; Rose S; Nigou J; Gilleron M; Puzo G; Erard F; Ryffel B; Quesniaux VF
    J Biol Chem; 2007 Sep; 282(36):26014-25. PubMed ID: 17617634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.
    Stahl M; Ries J; Vermeulen J; Yang H; Sham HP; Crowley SM; Badayeva Y; Turvey SE; Gaynor EC; Li X; Vallance BA
    PLoS Pathog; 2014 Jul; 10(7):e1004264. PubMed ID: 25033044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells.
    Xia MZ; Liang YL; Wang H; Chen X; Huang YY; Zhang ZH; Chen YH; Zhang C; Zhao M; Xu DX; Song LH
    J Pineal Res; 2012 Nov; 53(4):325-34. PubMed ID: 22537289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Panax ginseng C.A. Mayer G115 modulates pro-inflammatory cytokine production in mice throughout the increase of macrophage toll-like receptor 4 expression during physical stress.
    Pannacci M; Lucini V; Colleoni F; Martucci C; Grosso S; Sacerdote P; Scaglione F
    Brain Behav Immun; 2006 Nov; 20(6):546-51. PubMed ID: 16469481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SOCS1 regulates the IFN but not NFkappaB pathway in TLR-stimulated human monocytes and macrophages.
    Prêle CM; Woodward EA; Bisley J; Keith-Magee A; Nicholson SE; Hart PH
    J Immunol; 2008 Dec; 181(11):8018-26. PubMed ID: 19017994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Porcine Alveolar Macrophages by Actinobacillus pleuropneumoniae Lipopolysaccharide via the Toll-Like Receptor 4/NF-κB-Mediated Pathway.
    Li B; Fang J; Zuo Z; Yin S; He T; Yang M; Deng J; Shen L; Ma X; Yu S; Wang Y; Ren Z
    Infect Immun; 2018 Mar; 86(3):. PubMed ID: 29229731
    [No Abstract]   [Full Text] [Related]  

  • 17. Receptor recognition of and immune intracellular pathways for Veillonella parvula lipopolysaccharide.
    Matera G; Muto V; Vinci M; Zicca E; Abdollahi-Roodsaz S; van de Veerdonk FL; Kullberg BJ; Liberto MC; van der Meer JW; Focà A; Netea MG; Joosten LA
    Clin Vaccine Immunol; 2009 Dec; 16(12):1804-9. PubMed ID: 19828771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanidin-3-O-β-glucoside ameliorates lipopolysaccharide-induced acute lung injury by reducing TLR4 recruitment into lipid rafts.
    Fu Y; Zhou E; Wei Z; Wang W; Wang T; Yang Z; Zhang N
    Biochem Pharmacol; 2014 Jul; 90(2):126-34. PubMed ID: 24841888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of lipopolysaccharide-induced IL-1β and TNF-α production in macrophages by palmitate via modulating TLR4 downstream signaling.
    Fang C; Wang L; Qiao J; Chang L; He Q; Zhang X; Liu M
    Int Immunopharmacol; 2022 Feb; 103():108456. PubMed ID: 34923420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages.
    Itoh K; Udagawa N; Kobayashi K; Suda K; Li X; Takami M; Okahashi N; Nishihara T; Takahashi N
    J Immunol; 2003 Apr; 170(7):3688-95. PubMed ID: 12646634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.