BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 29536043)

  • 1. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast.
    Liu Z; Pouli D; Alonzo CA; Varone A; Karaliota S; Quinn KP; Münger K; Karalis KP; Georgakoudi I
    Sci Adv; 2018 Mar; 4(3):eaap9302. PubMed ID: 29536043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Optical Metabolic Imaging in Cells and Tissues.
    Georgakoudi I; Quinn KP
    Annu Rev Biomed Eng; 2023 Jun; 25():413-443. PubMed ID: 37104650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide effects on the metabolism of human fibroblasts and keratinocytes assessed by quantitative, label-free fluorescence imaging.
    Liu Z; Chiang CY; Nip J; Feng L; Zhang Y; Rocha S; Georgakoudi I
    Biomed Opt Express; 2021 Oct; 12(10):6375-6390. PubMed ID: 34745743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical changes in THP-1 macrophage metabolism in response to pro- and anti-inflammatory stimuli reported by label-free two-photon imaging.
    Smokelin I; Mizzoni C; Erndt-Marino J; Kaplan D; Georgakoudi I
    J Biomed Opt; 2020 Jan; 25(1):1-14. PubMed ID: 31953928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous Two-Photon Excited Fluorescence Imaging Characterizes Neuron and Astrocyte Metabolic Responses to Manganese Toxicity.
    Stuntz E; Gong Y; Sood D; Liaudanskaya V; Pouli D; Quinn KP; Alonzo C; Liu Z; Kaplan DL; Georgakoudi I
    Sci Rep; 2017 Apr; 7(1):1041. PubMed ID: 28432298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.
    Heikal AA
    Biomark Med; 2010 Apr; 4(2):241-63. PubMed ID: 20406068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
    Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ
    Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton redox ratio imaging for metabolic monitoring in vivo.
    Skala M; Ramanujam N
    Methods Mol Biol; 2010; 594():155-62. PubMed ID: 20072916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue Imaging and Quantification Relying on Endogenous Contrast.
    Liu Z; Meng J; Quinn KP; Georgakoudi I
    Adv Exp Med Biol; 2021; 3233():257-288. PubMed ID: 34053031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo fluorescence lifetime imaging of macrophage intracellular metabolism during wound responses in zebrafish.
    Miskolci V; Tweed KE; Lasarev MR; Britt EC; Walsh AJ; Zimmerman LJ; McDougal CE; Cronan MR; Fan J; Sauer JD; Skala MC; Huttenlocher A
    Elife; 2022 Feb; 11():. PubMed ID: 35200139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous two-photon fluorescence imaging elucidates metabolic changes related to enhanced glycolysis and glutamine consumption in precancerous epithelial tissues.
    Varone A; Xylas J; Quinn KP; Pouli D; Sridharan G; McLaughlin-Drubin ME; Alonzo C; Lee K; Münger K; Georgakoudi I
    Cancer Res; 2014 Jun; 74(11):3067-75. PubMed ID: 24686167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction.
    Mehrvar S; Camara AKS; Ranji M
    Methods Mol Biol; 2021; 2276():259-270. PubMed ID: 34060048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity.
    Chacko JV; Eliceiri KW
    Cytometry A; 2019 Jan; 95(1):56-69. PubMed ID: 30296355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Cell Metabolism Through Autofluorescence Imaging of NAD(P)H and FAD.
    Kolenc OI; Quinn KP
    Antioxid Redox Signal; 2019 Feb; 30(6):875-889. PubMed ID: 29268621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD(P)H fluorescence.
    Chorvatova A; Elzwiei F; Mateasik A; Chorvat D
    J Biomed Opt; 2012 Oct; 17(10):101505. PubMed ID: 23223981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells.
    Hu L; Wang N; Cardona E; Walsh AJ
    Biomed Opt Express; 2020 Oct; 11(10):5674-5688. PubMed ID: 33149978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.