These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29536106)

  • 1. Examination of Prosody and Timbre Perception in Adults With Cochlear Implants Comparing Different Fine Structure Coding Strategies.
    Müller V; Klünter H; Fürstenberg D; Meister H; Walger M; Lang-Roth R
    Am J Audiol; 2018 Jun; 27(2):197-207. PubMed ID: 29536106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formant frequency discrimination with a fine structure sound coding strategy for cochlear implants.
    Liepins R; Kaider A; Honeder C; Auinger AB; Dahm V; Riss D; Arnoldner C
    Hear Res; 2020 Jul; 392():107970. PubMed ID: 32339775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies.
    Riss D; Hamzavi JS; Blineder M; Honeder C; Ehrenreich I; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Ear Hear; 2014; 35(6):e272-81. PubMed ID: 25127325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examination of spectral timbre cues and musical instrument identification in cochlear implant recipients.
    Meister H; Landwehr M; Lang-Roth R; Streicher B; Walger M
    Cochlear Implants Int; 2014 Mar; 15(2):78-86. PubMed ID: 24597635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of various electrode configurations on music perception, intonation and speaker gender identification.
    Landwehr M; Fürstenberg D; Walger M; von Wedel H; Meister H
    Cochlear Implants Int; 2014 Jan; 15(1):27-35. PubMed ID: 23684531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Stimulation Rate With the FS4 and HDCIS Coding Strategies in Cochlear Implant Recipients.
    Riss D; Hamzavi JS; Blineder M; Flak S; Baumgartner WD; Kaider A; Arnoldner C
    Otol Neurotol; 2016 Aug; 37(7):882-8. PubMed ID: 27295444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timbre and speech perception in bimodal and bilateral cochlear-implant listeners.
    Kong YY; Mullangi A; Marozeau J
    Ear Hear; 2012; 33(5):645-59. PubMed ID: 22677814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FS4 for partial deafness treatment.
    Lorens A; Zgoda M; Polak M; Skarzynski H
    Cochlear Implants Int; 2014 May; 15 Suppl 1():S78-80. PubMed ID: 24869452
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of the Effects of Two Cochlear Implant Fine Structure Coding Strategies on Speech Perception.
    Müller V; Klünter HD; Fürstenberg D; Walger M; Lang-Roth R
    Am J Audiol; 2020 Jun; 29(2):226-235. PubMed ID: 32464082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of age on melody and timbre perception in simulations of electro-acoustic and cochlear-implant hearing.
    Arehart KH; Croghan NB; Muralimanohar RK
    Ear Hear; 2014; 35(2):195-202. PubMed ID: 24441739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear implants with fine structure processing improve speech and tone perception in Mandarin-speaking adults.
    Chen X; Liu B; Liu S; Mo L; Li Y; Kong Y; Zheng J; Li Y; Gong S; Han D
    Acta Otolaryngol; 2013 Jul; 133(7):733-8. PubMed ID: 23768059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired perception of temporal fine structure and musical timbre in cochlear implant users.
    Heng J; Cantarero G; Elhilali M; Limb CJ
    Hear Res; 2011 Oct; 280(1-2):192-200. PubMed ID: 21664263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Speech and pitch perception with the new fine structure speech coding strategy].
    Gu P; Xi X; Han D; Hong M; Wang Q; Yang S; Dai P
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2013 May; 27(10):481-4. PubMed ID: 23937013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spectral cues for musical timbre perception in electric hearing.
    Kong YY; Mullangi A; Marozeau J; Epstein M
    J Speech Lang Hear Res; 2011 Jun; 54(3):981-94. PubMed ID: 21060140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tone discrimination and speech perception benefit in Mandarin-speaking children fit with HiRes fidelity 120 sound processing.
    Chang YT; Yang HM; Lin YH; Liu SH; Wu JL
    Otol Neurotol; 2009 Sep; 30(6):750-7. PubMed ID: 19704359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tone, rhythm, and timbre perception in school-age children using cochlear implants and hearing aids.
    Innes-Brown H; Marozeau JP; Storey CM; Blamey PJ
    J Am Acad Audiol; 2013 Oct; 24(9):789-806. PubMed ID: 24224987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Music Perception Outcomes: Implications for Melody and Timbre Recognition in Cochlear Implant Recipients.
    Parkinson AJ; Rubinstein JT; Drennan WR; Dodson C; Nie K
    Otol Neurotol; 2019 Mar; 40(3):e283-e289. PubMed ID: 30741908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study.
    Macherey O; Delpierre A
    Ear Hear; 2013; 34(4):426-36. PubMed ID: 23334356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental-frequency discrimination based on temporal-envelope cues: Effects of bandwidth and interference.
    Mehta AH; Oxenham AJ
    J Acoust Soc Am; 2018 Nov; 144(5):EL423. PubMed ID: 30522318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.