BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29536162)

  • 1. Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters.
    Hofmann MM; Fleischmann A; Renner SS
    Oecologia; 2018 Jul; 187(3):701-706. PubMed ID: 29536162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No statistical evidence that honey bees competitively reduced wild bee abundance in the Munich Botanic Garden-a comment on Renner et al. (2021).
    Harder LD; Miksha RM
    Oecologia; 2022 Feb; 198(2):337-341. PubMed ID: 35064820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow habitat breadth and late-summer emergence increases extinction vulnerability in Central European bees.
    Hofmann MM; Zohner CM; Renner SS
    Proc Biol Sci; 2019 Mar; 286(1898):20190316. PubMed ID: 30836868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Activity patterns and foraging behavior of Apis cerana cerana in the urban gardens in winter].
    Chen FJ; Yang QQ; Long L; Hu HM; Duan B; Chen WN
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):275-81. PubMed ID: 27228619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting the botanical landscape of Melbourne Gardens (Royal Botanic Gardens Victoria) in response to climate change.
    Entwisle TJ; Cole C; Symes P
    Plant Divers; 2017 Dec; 39(6):338-347. PubMed ID: 30159527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds.
    Requier F; Odoux JF; Tamic T; Moreau N; Henry M; Decourtye A; Bretagnolle V
    Ecol Appl; 2015 Jun; 25(4):881-90. PubMed ID: 26465030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.
    Quistberg RD; Bichier P; Philpott SM
    Environ Entomol; 2016 Jun; 45(3):592-601. PubMed ID: 27034445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands.
    Scheper J; Reemer M; van Kats R; Ozinga WA; van der Linden GT; Schaminée JH; Siepel H; Kleijn D
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17552-7. PubMed ID: 25422416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The growing and vital role of botanical gardens in climate change research.
    Primack RB; Ellwood ER; Gallinat AS; Miller-Rushing AJ
    New Phytol; 2021 Aug; 231(3):917-932. PubMed ID: 33890323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential supply of floral resources to managed honey bees in natural mistbelt forests.
    Mensah S; Veldtman R; Seifert T
    J Environ Manage; 2017 Mar; 189():160-167. PubMed ID: 28038411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vegetation Management and Host Density Influence Bee-Parasite Interactions in Urban Gardens.
    Cohen H; Quistberg RD; Philpott SM
    Environ Entomol; 2017 Dec; 46(6):1313-1321. PubMed ID: 29069309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Floral abundance, richness, and spatial distribution drive urban garden bee communities.
    Plascencia M; Philpott SM
    Bull Entomol Res; 2017 Oct; 107(5):658-667. PubMed ID: 28245886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pollination in a new climate: Assessing the potential influence of flower temperature variation on insect pollinator behaviour.
    Shrestha M; Garcia JE; Bukovac Z; Dorin A; Dyer AG
    PLoS One; 2018; 13(8):e0200549. PubMed ID: 30067757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens.
    Tresch S; Frey D; Le Bayon RC; Zanetta A; Rasche F; Fliessbach A; Moretti M
    Sci Total Environ; 2019 Mar; 658():1614-1629. PubMed ID: 30678018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of botanical gardens in scientific research, conservation, and citizen science.
    Chen G; Sun W
    Plant Divers; 2018 Aug; 40(4):181-188. PubMed ID: 30740563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated rates of dietary generalization in eusocial lineages of the secondarily herbivorous bees.
    Wood TJ; Müller A; Praz C; Michez D
    BMC Ecol Evol; 2023 Nov; 23(1):67. PubMed ID: 37986035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping floral resources for honey bees in New Zealand at the catchment scale.
    Ausseil AE; Dymond JR; Newstrom L
    Ecol Appl; 2018 Jul; 28(5):1182-1196. PubMed ID: 29528528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bee community preference for an invasive thistle associated with higher pollen protein content.
    Russo L; Vaudo AD; Fisher CJ; Grozinger CM; Shea K
    Oecologia; 2019 Aug; 190(4):901-912. PubMed ID: 31280369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct benefits and indirect costs of warm temperatures for high-elevation populations of a solitary bee.
    Forrest JR; Chisholm SP
    Ecology; 2017 Feb; 98(2):359-369. PubMed ID: 27861777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins and ecological consequences of pollen specialization among desert bees.
    Minckley RL; Cane JH; Kervin L
    Proc Biol Sci; 2000 Feb; 267(1440):265-71. PubMed ID: 10714881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.