These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 29536594)

  • 1. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy.
    Pitzalis S; Strappini F; Bultrini A; Di Russo F
    Hum Brain Mapp; 2018 Jul; 39(7):2868-2886. PubMed ID: 29536594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps.
    Pitzalis S; Strappini F; De Gasperis M; Bultrini A; Di Russo F
    PLoS One; 2012; 7(4):e35771. PubMed ID: 22558222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of luminance and chromatic background flicker on the human visual evoked potential.
    Brigell M; Strafella A; Parmeggiani L; DeMarco PJ; Celesia GG
    Vis Neurosci; 1996; 13(2):265-75. PubMed ID: 8737277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the neural sources of the pattern-reversal VEP.
    Di Russo F; Pitzalis S; Spitoni G; Aprile T; Patria F; Spinelli D; Hillyard SA
    Neuroimage; 2005 Feb; 24(3):874-86. PubMed ID: 15652322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex.
    Goddard E; Mullen KT
    Neuroimage; 2020 Jul; 215():116780. PubMed ID: 32276074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specializations for chromatic and temporal signals in human visual cortex.
    Liu J; Wandell BA
    J Neurosci; 2005 Mar; 25(13):3459-68. PubMed ID: 15800201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing.
    Rabin J; Switkes E; Crognale M; Schneck ME; Adams AJ
    Vision Res; 1994 Oct; 34(20):2657-71. PubMed ID: 7975303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain mechanisms for perceiving illusory lines in humans.
    Anken J; Tivadar RI; Knebel JF; Murray MM
    Neuroimage; 2018 Nov; 181():182-189. PubMed ID: 30008430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.
    Welbourne LE; Morland AB; Wade AR
    Neuroimage; 2018 Feb; 167():84-94. PubMed ID: 29155081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.
    Robson AG; Kulikowski JJ
    Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRI measurements of color in macaque and human.
    Wade A; Augath M; Logothetis N; Wandell B
    J Vis; 2008 Sep; 8(10):6.1-19. PubMed ID: 19146348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of the chromatic pattern-onset VEP.
    Gerth C; Delahunt PB; Crognale MA; Werner JS
    J Vis; 2003; 3(2):171-82. PubMed ID: 12678619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential.
    Di Russo F; Pitzalis S; Aprile T; Spitoni G; Patria F; Stella A; Spinelli D; Hillyard SA
    Hum Brain Mapp; 2007 Apr; 28(4):323-34. PubMed ID: 16779799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrophysiological basis of colour processing in macaques with V4 lesions.
    Kulikowski JJ; Walsh V; McKeefry D; Butler SR; Carden D
    Behav Brain Res; 1994 Jan; 60(1):73-8. PubMed ID: 8185854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural correlates of chromostereopsis: an evoked potential study.
    Cauquil AS; Delaux S; Lestringant R; Taylor MJ; Trotter Y
    Neuropsychologia; 2009 Oct; 47(12):2677-81. PubMed ID: 19442677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel motion signals to the medial and lateral motion areas V6 and MT+.
    Pitzalis S; Bozzacchi C; Bultrini A; Fattori P; Galletti C; Di Russo F
    Neuroimage; 2013 Feb; 67():89-100. PubMed ID: 23186916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depth-dependent functional MRI responses to chromatic and achromatic stimuli throughout V1 and V2.
    Navarro KT; Sanchez MJ; Engel SA; Olman CA; Weldon KB
    Neuroimage; 2021 Feb; 226():117520. PubMed ID: 33137474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equiluminant red-green and blue-yellow VEPs in multiple sclerosis.
    Sartucci F; Murri L; Orsini C; Porciatti V
    J Clin Neurophysiol; 2001 Nov; 18(6):583-91. PubMed ID: 11779973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.