These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29537030)

  • 1. Unimolecular decomposition of formamide via direct chemical dynamics simulations.
    Gahlaut A; Paranjothy M
    Phys Chem Chem Phys; 2018 Mar; 20(13):8498-8505. PubMed ID: 29537030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of HCN, HNC, and HNCO Formation in the 193 nm Photodissociation of Formamide.
    Caster KL; Seifert NA; Ruscic B; Jasper AW; Prozument K
    J Phys Chem A; 2024 Sep; 128(37):7761-7771. PubMed ID: 39225655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the decomposition of formamide in the presence of water molecules.
    Nguyen VS; Orlando TM; Leszczynski J; Nguyen MT
    J Phys Chem A; 2013 Mar; 117(12):2543-55. PubMed ID: 23461351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimolecular photolysis mechanisms of formamide: the effect of thermal energy.
    Suwannakham P; Sagarik K
    Phys Chem Chem Phys; 2020 Nov; 22(44):25789-25802. PubMed ID: 33150341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Chemical Dynamics Simulations of H
    Naz EG; Godara S; Paranjothy M
    J Phys Chem A; 2018 Nov; 122(43):8497-8504. PubMed ID: 30350635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-energy chemistry of formamide: a simpler way for nucleobase formation.
    Ferus M; Michalčíková R; Shestivská V; Šponer J; Šponer JE; Civiš S
    J Phys Chem A; 2014 Jan; 118(4):719-36. PubMed ID: 24437678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unimolecular Dissociation of γ-Ketohydroperoxide via Direct Chemical Dynamics Simulations.
    Naz EG; Paranjothy M
    J Phys Chem A; 2020 Oct; 124(40):8120-8127. PubMed ID: 32930591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classical Dynamics Simulations of Dissociation of Protonated Tryptophan in the Gas Phase.
    Krishnan Y; Sharma N; Lourderaj U; Paranjothy M
    J Phys Chem A; 2017 Jun; 121(23):4389-4396. PubMed ID: 28537746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition pathways of the neutral and protonated formamide in some lower-lying excited states.
    Nguyen HT; Nguyen VS; Trung NT; Havenith RW; Nguyen MT
    J Phys Chem A; 2013 Aug; 117(33):7904-17. PubMed ID: 23889466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared Chemiluminescence Study of the Reaction of Hydroxyl Radical with Formamide and the Secondary Unimolecular Reaction of Chemically Activated Carbamic Acid.
    Butkovskaya NI; Setser DW
    J Phys Chem A; 2018 Apr; 122(15):3735-3746. PubMed ID: 29614222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial mechanisms for the unimolecular decomposition of electronically excited bisfuroxan based energetic materials.
    Yuan B; Bernstein ER
    J Chem Phys; 2017 Jan; 146(1):014301. PubMed ID: 28063429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formamide reaction network in gas phase and solution via a unified theoretical approach: Toward a reconciliation of different prebiotic scenarios.
    Pietrucci F; Saitta AM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15030-5. PubMed ID: 26598679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantum mechanical study of dehydration vs. decarbonylation of formamide catalysed by amorphous silica surfaces.
    Pantaleone S; Salvini C; Zamirri L; Signorile M; Bonino F; Ugliengo P
    Phys Chem Chem Phys; 2020 Apr; 22(16):8353-8363. PubMed ID: 32266913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal decomposition of 1,5-dinitrobiuret (DNB): direct dynamics trajectory simulations and statistical modeling.
    Liu J; Chambreau SD; Vaghjiani GL
    J Phys Chem A; 2011 Jul; 115(28):8064-72. PubMed ID: 21648953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of formamide decomposition pathways.
    Nguyen VS; Abbott HL; Dawley MM; Orlando TM; Leszczynski J; Nguyen MT
    J Phys Chem A; 2011 Feb; 115(5):841-51. PubMed ID: 21229996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competing Molecular and Radical Pathways in the Dissociation of Halons via Direct Chemical Dynamics Simulations.
    Godara S; Paranjothy M
    J Phys Chem A; 2019 Oct; 123(40):8527-8535. PubMed ID: 31539256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deprotonated purine dissociation: experiments, computations, and astrobiological implications.
    Cole CA; Wang ZC; Snow TP; Bierbaum VM
    J Phys Chem A; 2015 Jan; 119(2):334-43. PubMed ID: 25559322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Investigation of Bimolecular Carbon Chain Growth Reactions in the Interstellar Media.
    Regina A; Paranjothy M
    J Phys Chem A; 2024 Mar; 128(12):2409-2416. PubMed ID: 38478978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics simulations and statistical modeling of thermal decomposition of 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-2,3-dimethylimidazolium dicyanamide.
    Liu J; Chambreau SD; Vaghjiani GL
    J Phys Chem A; 2014 Nov; 118(47):11133-44. PubMed ID: 25275818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Radiation Chemistry of NH
    Volosatova AD; Tyurin DA; Feldman VI
    J Phys Chem A; 2022 Jun; 126(24):3893-3902. PubMed ID: 35696324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.