These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 29537074)

  • 1. Combinatorial pathway engineering using type I-E CRISPR interference.
    Tarasava K; Liu R; Garst A; Gill RT
    Biotechnol Bioeng; 2018 Jul; 115(7):1878-1883. PubMed ID: 29537074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium starvation improves production of malonyl-CoA-derived metabolites in Escherichia coli.
    Tokuyama K; Toya Y; Matsuda F; Cress BF; Koffas MAG; Shimizu H
    Metab Eng; 2019 Mar; 52():215-223. PubMed ID: 30529031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis.
    Liu C; Ding Y; Zhang R; Liu H; Xian M; Zhao G
    Metab Eng; 2016 Mar; 34():104-111. PubMed ID: 26791242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.
    Cheng Z; Jiang J; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli.
    Wu J; Du G; Chen J; Zhou J
    Sci Rep; 2015 Sep; 5():13477. PubMed ID: 26323217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe.
    Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A
    Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.
    Wu J; Zhang X; Zhu Y; Tan Q; He J; Dong M
    Sci Rep; 2017 May; 7(1):1459. PubMed ID: 28469159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains.
    Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S
    J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient production of 3-hydroxypropionate from fatty acids feedstock in Escherichia coli.
    Liu B; Xiang S; Zhao G; Wang B; Ma Y; Liu W; Tao Y
    Metab Eng; 2019 Jan; 51():121-130. PubMed ID: 30343047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flux Control at the Malonyl-CoA Node through Hierarchical Dynamic Pathway Regulation in Saccharomyces cerevisiae.
    David F; Nielsen J; Siewers V
    ACS Synth Biol; 2016 Mar; 5(3):224-33. PubMed ID: 26750662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative genome editing of Escherichia coli for 3-hydroxypropionic acid production.
    Liu R; Liang L; Choudhury A; Bassalo MC; Garst AD; Tarasava K; Gill RT
    Metab Eng; 2018 May; 47():303-313. PubMed ID: 29665411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis.
    Liu C; Ding Y; Xian M; Liu M; Liu H; Ma Q; Zhao G
    Crit Rev Biotechnol; 2017 Nov; 37(7):933-941. PubMed ID: 28078904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement.
    Liu C; Wang Q; Xian M; Ding Y; Zhao G
    PLoS One; 2013; 8(9):e75554. PubMed ID: 24073271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning.
    Gao C; Wang S; Hu G; Guo L; Chen X; Xu P; Liu L
    Biotechnol Bioeng; 2018 Mar; 115(3):661-672. PubMed ID: 29105733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial Optimization of Resveratrol Production in Engineered E. coli.
    Zhao Y; Wu BH; Liu ZN; Qiao J; Zhao GR
    J Agric Food Chem; 2018 Dec; 66(51):13444-13453. PubMed ID: 30488696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.