These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29537111)

  • 1. Nanoparticle Interactions Guided by Shape-Dependent Hydrophobic Forces.
    Tan SF; Raj S; Bisht G; Annadata HV; Nijhuis CA; Král P; Mirsaidov U
    Adv Mater; 2018 Apr; 30(16):e1707077. PubMed ID: 29537111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions and Attachment Pathways between Functionalized Gold Nanorods.
    Tan SF; Anand U; Mirsaidov U
    ACS Nano; 2017 Feb; 11(2):1633-1640. PubMed ID: 28117977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of Templated Assembly of Nanoparticle Filaments within Nanochannels.
    Miele E; Raj S; Baraissov Z; Král P; Mirsaidov U
    Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28752593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Understanding of the Growth Kinetics and Dynamics of Nanoparticle Superlattices by Coupling Interparticle Forces from Real-Time Measurements.
    Lee J; Nakouzi E; Song M; Wang B; Chun J; Li D
    ACS Nano; 2018 Dec; 12(12):12778-12787. PubMed ID: 30422615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between Short- and Long-Ranged Forces Leading to the Formation of Ag Nanoparticle Superlattice.
    Lee J; Nakouzi E; Xiao D; Wu Z; Song M; Ophus C; Chun J; Li D
    Small; 2019 Aug; 15(33):e1901966. PubMed ID: 31225719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interparticle Forces Underlying Nanoparticle Self-Assemblies.
    Luo D; Yan C; Wang T
    Small; 2015 Dec; 11(45):5984-6008. PubMed ID: 26436692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-Induced Motion and Self-Assembly Pathways between Nanocubes.
    Zhang J; Zhang X; Yang D; Zhao P
    J Phys Chem Lett; 2021 Mar; 12(9):2429-2436. PubMed ID: 33661007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of CoPt Magnetic Nanoparticle Arrays and its Underlying Forces.
    Bian B; Chen G; Zheng Q; Du J; Lu H; Liu JP; Hu Y; Zhang Z
    Small; 2018 Aug; 14(34):e1801184. PubMed ID: 30058262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally Guided Assembly of Oriented Nanocubes by Modulating Grafted Polymer-Surface Interactions.
    Gurunatha KL; Marvi S; Arya G; Tao AR
    Nano Lett; 2015 Nov; 15(11):7377-82. PubMed ID: 26457977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time imaging of metallic supraparticle assembly during nanoparticle synthesis.
    Wang M; Park C; Woehl TJ
    Nanoscale; 2022 Jan; 14(2):312-319. PubMed ID: 34928292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Tracking of Colloidally Stable and Ordered Assemblies of Gold Nanorods.
    Grzelak D; Szustakiewicz P; Tollan C; Raj S; Král P; Lewandowski W; Liz-Marzán LM
    J Am Chem Soc; 2020 Nov; 142(44):18814-18825. PubMed ID: 32990433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Sorting of Two Hydrocarbon Receptors with One Carbonaceous Ligand.
    Matsuno T; Sato S; Yokoyama A; Kamata S; Isobe H
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15339-15343. PubMed ID: 27865043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell.
    Powers AS; Liao HG; Raja SN; Bronstein ND; Alivisatos AP; Zheng H
    Nano Lett; 2017 Jan; 17(1):15-20. PubMed ID: 27995796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction forces between a spherical nanoparticle and a flat surface.
    Sun W
    Phys Chem Chem Phys; 2014 Mar; 16(12):5846-54. PubMed ID: 24549220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-induced separation of nanospheres and aligned nanorods.
    Ahmad I; Zandvliet HJ; Kooij ES
    Langmuir; 2014 Jul; 30(27):7953-61. PubMed ID: 24959664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical van der Waals interaction potential for faceted nanoparticles.
    Lee BH; Arya G
    Nanoscale Horiz; 2020 Dec; 5(12):1628-1642. PubMed ID: 33185642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver Nanocube and Nanobar Growth via Anisotropic Monomer Addition and Particle Attachment Processes.
    Xiao D; Wu Z; Song M; Chun J; Schenter GK; Li D
    Langmuir; 2018 Jan; 34(4):1466-1472. PubMed ID: 29287142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions.
    La Torre A; Gimenez-Lopez Mdel C; Fay MW; Lucas CH; Brown PD; Khlobystov AN
    Small; 2015 Jun; 11(23):2756-61. PubMed ID: 25689488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.