These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29537231)

  • 1. CHANGES IN ERYTHROCYTE SURFACE MARKER CD44 DURING HYPOTHERMIC AND LOW TEMPERATURE STORAGE.
    Zemlianskykh NG; Babijchuk LA
    Fiziol Zh (1994); 2016; 62(2):94-102. PubMed ID: 29537231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Not Available].
    Zemlianskykh NG
    Tsitol Genet; 2016; 50(3):66-79. PubMed ID: 30480411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEVELOPMENT OF A MODEL TO INVESTIGATE RED BLOOD CELL SURFACE CHARACTERISTICS AFTER CRYOPRESERVATION.
    Gordiyenko OI; Anikieieva MO; Rozanova SL; Kovalenko SY; Kovalenkol IF; Gordiyenko EO
    Cryo Letters; 2015; 36(3):221-6. PubMed ID: 26510341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability after thawing of RBCs frozen with the high- and low-glycerol method.
    Lelkens CC; Noorman F; Koning JG; Truijens-de Lange R; Stekkinger PS; Bakker JC; Lagerberg JW; Brand A; Verhoeven AJ
    Transfusion; 2003 Feb; 43(2):157-64. PubMed ID: 12559010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic effects of dilution on erythrocytes after freezing and thawing in glycerol-containing buffer.
    De Loecker R; Goossens W; Van Duppen V; Verwilghen R; De Loecker W
    Cryobiology; 1993 Jun; 30(3):279-85. PubMed ID: 8370314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between advancing ice fronts and erythrocytes. Mechanism of erythrocyte destruction upon freezing and influence of cryoprotective agents.
    Van Oss CJ; Giese RF; Norris J
    Cell Biophys; 1991 Jun; 18(3):253-61. PubMed ID: 1726535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic tolerance limits of red blood cells from umbilical cord blood.
    Zhurova M; Lusianti RE; Higgins AZ; Acker JP
    Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates.
    Korsak J; Goller A; Rzeszotarska A; Pleskacz K
    Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effectiveness of the cryoprotective effect of glycerol and polyethylene glycol on plasma membranes].
    Riazantsev VV; GulevskiÄ­ AK
    Ukr Biokhim Zh (1978); 1987; 59(5):97-9. PubMed ID: 3686703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHANGES IN ERYTHROCYTE CA2+-ATPASE ACTIVITY UNDER PEG-1500 AND LOW TEMPERATURE INFLUENCE.
    Zemlianskykh NG; Babijchuk LA
    Tsitologiia; 2016; 58(12):964-70. PubMed ID: 30188622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.
    Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN
    Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Intracellular free calcium content increase in the erythrocytes treated with the cryoprotective medium based on polyethylene glycol 1500 (PEG-1500)].
    Kucherenko IuV
    Ukr Biokhim Zh (1999); 2008; 80(3):124-30. PubMed ID: 18959037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Possibility of Cryopreservation of Feline and Canine Erythrocytes by Rapid Freezing with Penetrating and Non-Penetrating Cryoprotectants.
    Pogozhykh D; Pakhomova Y; Pervushina O; Hofmann N; Glasmacher B; Zhegunov G
    PLoS One; 2017; 12(1):e0169689. PubMed ID: 28072844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frozen Blood Reserves.
    Lagerberg JW
    Methods Mol Biol; 2021; 2180():523-538. PubMed ID: 32797432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin.
    Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y
    Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freezing under pressure: a new method for cryopreservation.
    Greer N
    Cryobiology; 2015 Feb; 70(1):66-70. PubMed ID: 25541141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the effects of glycerol, dimethyl sulfoxide, and hydroxyethyl starch solutions for cryopreservation of avian red blood cells.
    Graham JE; Meola DM; Kini NR; Hoffman AM
    Am J Vet Res; 2015 Jun; 76(6):487-93. PubMed ID: 26000595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol.
    Lelkens CC; de Korte D; Lagerberg JW
    Vox Sang; 2015 Apr; 108(3):219-25. PubMed ID: 25471217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C.
    Lagerberg JW; Truijens-de Lange R; de Korte D; Verhoeven AJ
    Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression.
    Holovati JL; Wong KA; Webster JM; Acker JP
    Transfusion; 2008 Aug; 48(8):1658-68. PubMed ID: 18482179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.