BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29537253)

  • 1. Engineering Reversible Cell-Cell Interactions with Lipid Anchored Prosthetic Receptors.
    Csizmar CM; Petersburg JR; Hendricks A; Stern LA; Hackel BJ; Wagner CR
    Bioconjug Chem; 2018 Apr; 29(4):1291-1301. PubMed ID: 29537253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells.
    Petersburg JR; Shen J; Csizmar CM; Murphy KA; Spanier J; Gabrielse K; Griffith TS; Fife B; Wagner CR
    ACS Nano; 2018 Jul; 12(7):6563-6576. PubMed ID: 29792808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible re-programing of cell-cell interactions.
    Gabrielse K; Gangar A; Kumar N; Lee JC; Fegan A; Shen JJ; Li Q; Vallera D; Wagner CR
    Angew Chem Int Ed Engl; 2014 May; 53(20):5112-6. PubMed ID: 24700601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivalent Ligand Binding to Cell Membrane Antigens: Defining the Interplay of Affinity, Valency, and Expression Density.
    Csizmar CM; Petersburg JR; Perry TJ; Rozumalski L; Hackel BJ; Wagner CR
    J Am Chem Soc; 2019 Jan; 141(1):251-261. PubMed ID: 30507196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Biomimetic Trogocytosis with Farnesylated Chemically Self-Assembled Nanorings.
    Wang Y; Rozumalski L; Kilic O; Lichtenfels C; Petersberg J; Distefano MD; Wagner CR
    Biomacromolecules; 2022 Dec; 23(12):5018-5035. PubMed ID: 36416233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering reversible cell-cell interactions using enzymatically lipidated chemically self-assembled nanorings.
    Wang Y; Kilic O; Csizmar CM; Ashok S; Hougland JL; Distefano MD; Wagner CR
    Chem Sci; 2020 Oct; 12(1):331-340. PubMed ID: 34168743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming Cell-Cell Interactions through Non-genetic Membrane Engineering.
    Csizmar CM; Petersburg JR; Wagner CR
    Cell Chem Biol; 2018 Aug; 25(8):931-940. PubMed ID: 29909993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands.
    K C TB; Suga K; Isoshima T; Aigaki T; Ito Y; Shiba K; Uzawa T
    Biochem Biophys Res Commun; 2018 Jun; 500(2):283-287. PubMed ID: 29660346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vivo Evaluation of Site-Specifically PEGylated Chemically Self-Assembled Protein Nanostructures.
    Shah R; Petersburg J; Gangar AC; Fegan A; Wagner CR; Kumarapperuma SC
    Mol Pharm; 2016 Jul; 13(7):2193-203. PubMed ID: 26985775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EpCAM expression in squamous cell carcinoma of the uterine cervix detected by monoclonal antibody to the membrane-proximal part of EpCAM.
    Chantima W; Thepthai C; Cheunsuchon P; Dharakul T
    BMC Cancer; 2017 Dec; 17(1):811. PubMed ID: 29202724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titratable Avidity Reduction Enhances Affinity Discrimination in Mammalian Cellular Selections of Yeast-Displayed Ligands.
    Stern LA; Csizmar CM; Woldring DR; Wagner CR; Hackel BJ
    ACS Comb Sci; 2017 May; 19(5):315-323. PubMed ID: 28322543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and dynamics of membrane-spanning DNA nanopores.
    Maingi V; Burns JR; Uusitalo JJ; Howorka S; Marrink SJ; Sansom MS
    Nat Commun; 2017 Mar; 8():14784. PubMed ID: 28317903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prosthetic Antigen Receptors.
    Shen J; Vallera DA; Wagner CR
    J Am Chem Soc; 2015 Aug; 137(32):10108-11. PubMed ID: 26230248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of N-linked glycosylation in EpCAM affected cell adhesion in breast cancer cells.
    Liu X; Gao J; Sun Y; Zhang D; Liu T; Yan Q; Yang X
    Biol Chem; 2017 Sep; 398(10):1119-1126. PubMed ID: 28315854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection and targeting of EpCAM protein by ssDNA aptamer.
    Alshaer W; Ababneh N; Hatmal M; Izmirli H; Choukeife M; Shraim A; Sharar N; Abu-Shiekah A; Odeh F; Al Bawab A; Awidi A; Ismail S
    PLoS One; 2017; 12(12):e0189558. PubMed ID: 29245156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EpCAM-targeted liposomal si-RNA delivery for treatment of epithelial cancer.
    Bhavsar D; Subramanian K; Sethuraman S; Krishnan UM
    Drug Deliv; 2016 May; 23(4):1101-14. PubMed ID: 25417832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture.
    Ates HC; Ozgur E; Kulah H
    Biointerphases; 2018 Mar; 13(2):021001. PubMed ID: 29571263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: influence of fibronectin adsorption and conformation.
    Campillo-Fernández AJ; Unger RE; Peters K; Halstenberg S; Santos M; Salmerón Sánchez M; Meseguer Dueñas JM; Monleón Pradas M; Gómez Ribelles JL; Kirkpatrick CJ
    Tissue Eng Part A; 2009 Jun; 15(6):1331-41. PubMed ID: 18976156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring cancer metastasis prevention strategy: interrupting adhesion of cancer cells to vascular endothelia of potential metastatic tissues by antibody-coated nanomaterial.
    Xie J; Dong H; Chen H; Zhao R; Sinko PJ; Shen W; Wang J; Lu Y; Yang X; Xie F; Jia L
    J Nanobiotechnology; 2015 Feb; 13():9. PubMed ID: 25643843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.