These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29537286)

  • 1. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis.
    Wang J; Zhou Z; Yue L; Wang S; Willner I
    Nano Lett; 2018 Apr; 18(4):2718-2724. PubMed ID: 29537286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triggered Reversible Reconfiguration of G-Quadruplex-Bridged "Domino"-Type Origami Dimers: Application of the Systems for Programmed Catalysis.
    Wang J; Yue L; Wang S; Willner I
    ACS Nano; 2018 Dec; 12(12):12324-12336. PubMed ID: 30427652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures.
    Ouyang Y; Zhang P; Willner I
    Bioconjug Chem; 2023 Jan; 34(1):51-69. PubMed ID: 35973134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities.
    Wang J; Yue L; Li Z; Zhang J; Tian H; Willner I
    Nat Commun; 2019 Oct; 10(1):4963. PubMed ID: 31672967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles.
    Wu N; Willner I
    Nano Lett; 2016 Apr; 16(4):2867-72. PubMed ID: 26931508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmed catalysis within stimuli-responsive mechanically unlocked nanocavities in DNA origami tiles.
    Wang J; Zhou Z; Li Z; Willner I
    Chem Sci; 2020 Oct; 12(1):341-351. PubMed ID: 34168744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triggered Interconversion of Dynamic Networks Composed of DNA-Tetrahedra Nanostructures.
    Zhou Z; Zhang P; Yue L; Willner I
    Nano Lett; 2019 Oct; 19(10):7540-7547. PubMed ID: 31549514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines.
    Liu X; Lu CH; Willner I
    Acc Chem Res; 2014 Jun; 47(6):1673-80. PubMed ID: 24654959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-Induced Reversible Reconfiguration of DNA-Based Constitutional Dynamic Networks: Application to Switchable Catalysis.
    Wang S; Yue L; Li ZY; Zhang J; Tian H; Willner I
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8105-8109. PubMed ID: 29697897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures.
    Lu CH; Cecconello A; Willner I
    J Am Chem Soc; 2016 Apr; 138(16):5172-85. PubMed ID: 27019201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-Based Multiconstituent Dynamic Networks: Hierarchical Adaptive Control over the Composition and Cooperative Catalytic Functions of the Systems.
    Zhou Z; Yue L; Wang S; Lehn JM; Willner I
    J Am Chem Soc; 2018 Sep; 140(38):12077-12089. PubMed ID: 30157635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable enzyme/DNAzyme cascades by the reconfiguration of DNA nanostructures.
    Hu Y; Wang F; Lu CH; Girsh J; Golub E; Willner I
    Chemistry; 2014 Dec; 20(49):16203-9. PubMed ID: 25308317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gated Transient Dissipative Dimerization of DNA Tetrahedra Nanostructures for Programmed DNAzymes Catalysis.
    Li Z; Wang J; Zhou Z; O'Hagan MP; Willner I
    ACS Nano; 2022 Mar; 16(3):3625-3636. PubMed ID: 35184545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-Switchable DNAzyme Nanodevice for Imaging Multiple Metal Ions in Living Cells.
    Cui MR; Li XL; Xu JJ; Chen HY
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13005-13012. PubMed ID: 32100993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials.
    Wang J; Li Z; Willner I
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202215332. PubMed ID: 36651472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercommunication of DNA-Based Constitutional Dynamic Networks.
    Yue L; Wang S; Lilienthal S; Wulf V; Remacle F; Levine RD; Willner I
    J Am Chem Soc; 2018 Jul; 140(28):8721-8731. PubMed ID: 29965742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing of UO22+ and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes.
    Moshe M; Elbaz J; Willner I
    Nano Lett; 2009 Mar; 9(3):1196-200. PubMed ID: 19199475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures.
    Wang S; Yue L; Shpilt Z; Cecconello A; Kahn JS; Lehn JM; Willner I
    J Am Chem Soc; 2017 Jul; 139(28):9662-9671. PubMed ID: 28627887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible reconfiguration of DNA origami nanochambers monitored by single-molecule FRET.
    Saccà B; Ishitsuka Y; Meyer R; Sprengel A; Schöneweiß EC; Nienhaus GU; Niemeyer CM
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3592-7. PubMed ID: 25630797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching photonic and electrochemical functions of a DNAzyme by DNA machines.
    Liu X; Niazov-Elkan A; Wang F; Willner I
    Nano Lett; 2013 Jan; 13(1):219-25. PubMed ID: 23194295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.