These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 29537432)

  • 1. Iron polypyridyl catalysts assembled on metal oxide semiconductors for photocatalytic hydrogen generation.
    Race NA; Zhang W; Screen ME; Barden BA; McNamara WR
    Chem Commun (Camb); 2018 Mar; 54(26):3290-3293. PubMed ID: 29537432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron Polypyridyl Complexes for Photocatalytic Hydrogen Generation.
    Hartley CL; DiRisio RJ; Screen ME; Mayer KJ; McNamara WR
    Inorg Chem; 2016 Sep; 55(17):8865-70. PubMed ID: 27548389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron polypyridyl complex adsorbed on carbon surfaces for hydrogen generation.
    Margonis CM; Ho M; Travis BD; Brennessel WW; McNamara WR
    Chem Commun (Camb); 2021 Aug; 57(62):7697-7700. PubMed ID: 34259247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nickel complex of a conjugated bis-dithiocarbazate Schiff base for the photocatalytic production of hydrogen.
    Wise CF; Liu D; Mayer KJ; Crossland PM; Hartley CL; McNamara WR
    Dalton Trans; 2015 Aug; 44(32):14265-71. PubMed ID: 26194481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel pyridinethiolate complexes as catalysts for the light-driven production of hydrogen from aqueous solutions in noble-metal-free systems.
    Han Z; Shen L; Brennessel WW; Holland PL; Eisenberg R
    J Am Chem Soc; 2013 Oct; 135(39):14659-69. PubMed ID: 24004329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights.
    Gärtner F; Boddien A; Barsch E; Fumino K; Losse S; Junge H; Hollmann D; Brückner A; Ludwig R; Beller M
    Chemistry; 2011 May; 17(23):6425-36. PubMed ID: 21506181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid photocatalytic system comprising ZnS as light harvester and an [Fe(2)S(2)] hydrogenase mimic as hydrogen evolution catalyst.
    Wen F; Wang X; Huang L; Ma G; Yang J; Li C
    ChemSusChem; 2012 May; 5(5):849-53. PubMed ID: 22539196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous photochemical water oxidation by biuret-modified Fe-TAML: evidence of Fe(V)(O) intermediate.
    Panda C; Debgupta J; Díaz Díaz D; Singh KK; Sen Gupta S; Dhar BB
    J Am Chem Soc; 2014 Sep; 136(35):12273-82. PubMed ID: 25119524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreduction of iron(III) to iron(0) nanoparticles for simultaneous hydrogen evolution in aqueous solution.
    Wang CJ; Cao S; Qin B; Zhang C; Li TT; Fu WF
    ChemSusChem; 2014 Jul; 7(7):1924-33. PubMed ID: 24989677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution.
    Orain C; Quentel F; Gloaguen F
    ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.
    Li LH; Deng ZX; Xiao JX; Yang GW
    Nanotechnology; 2015 Jan; 26(25):255705. PubMed ID: 26040400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.
    Zee DZ; Chantarojsiri T; Long JR; Chang CJ
    Acc Chem Res; 2015 Jul; 48(7):2027-36. PubMed ID: 26101803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.
    Fong H; Peters JC
    Inorg Chem; 2015 Jun; 54(11):5124-35. PubMed ID: 25549663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.
    Liu M; Qiu X; Miyauchi M; Hashimoto K
    J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic water reduction and study of the formation of Fe(i)Fe(0) species in diiron catalyst systems.
    Li X; Wang M; Chen L; Wang X; Dong J; Sun L
    ChemSusChem; 2012 May; 5(5):913-9. PubMed ID: 22407945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fighting Fenton Chemistry: A Highly Active Iron(III) Tetracarbene Complex in Epoxidation Catalysis.
    Kück JW; Anneser MR; Hofmann B; Pöthig A; Cokoja M; Kühn FE
    ChemSusChem; 2015 Dec; 8(23):4056-63. PubMed ID: 26580492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate.
    Fukuzumi S; Jung J; Yamada Y; Kojima T; Nam W
    Chem Asian J; 2016 Apr; 11(8):1138-50. PubMed ID: 26889913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of iron hydrogenase active sites into a highly stable metal-organic framework for photocatalytic hydrogen generation.
    Sasan K; Lin Q; Mao C; Feng P
    Chem Commun (Camb); 2014 Sep; 50(72):10390-3. PubMed ID: 25061635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.