These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2953760)

  • 41. Adaptation of small intestinal membrane transport processes during diabetes mellitus in rats.
    Fedorak RN
    Can J Physiol Pharmacol; 1990 May; 68(5):630-5. PubMed ID: 2187577
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of diet on glucose transporter site density along the intestinal crypt-villus axis.
    Ferraris RP; Villenas SA; Hirayama BA; Diamond J
    Am J Physiol; 1992 Jun; 262(6 Pt 1):G1060-8. PubMed ID: 1616035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glucose-dependent insulinotropic polypeptide (GIP) stimulates transepithelial glucose transport.
    Singh SK; Bartoo AC; Krishnan S; Boylan MO; Schwartz JH; Michael Wolfe M
    Obesity (Silver Spring); 2008 Nov; 16(11):2412-6. PubMed ID: 18719661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of intestinal glucose secretion in normal and diabetic rats.
    Levine GM; Shiau YF; Deren JA
    Am J Physiol; 1982 May; 242(5):G455-9. PubMed ID: 6211101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of hyperglycaemia on sugar transport in the isolated mucosa of guinea-pig small intestine.
    Fischer E; Lauterbach F
    J Physiol; 1984 Oct; 355():567-86. PubMed ID: 6492003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. D-glucose uptake in intestinal brush-border membrane vesicles of rachitic rats.
    Treves C; Favilli F; Iantomasi T; Stio M; Vanni P; Vincenzini MT
    Biochem Int; 1987 Jun; 14(6):1121-32. PubMed ID: 3453097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oleic acid uptake by jejunal and ileal rat brush border membrane vesicles.
    Prieto RM; Stremmel W; Sales C; Tur JA
    Eur J Med Res; 1996 Jan; 1(4):199-203. PubMed ID: 9386269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The intestinal absorption of 3-O-methyl-D-glucose in methotrexate-treated rats: an in vivo study of small bowel function.
    Erdman SH; Hart MH; Park JH; Vanderhoof JA
    J Pediatr Gastroenterol Nutr; 1991 Nov; 13(4):360-6. PubMed ID: 1779309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sodium tungstate decreases sucrase and Na+/D-glucose cotransporter in the jejunum of diabetic rats.
    Miró-Queralt M; Guinovart JJ; Planas JM
    Am J Physiol Gastrointest Liver Physiol; 2008 Sep; 295(3):G479-84. PubMed ID: 18617558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the multiplicity of sugar transport systems in guinea pig jejunum.
    Lostao MP; Berjón A; Barber A; Ponz F
    Rev Esp Fisiol; 1992 Mar; 48(1):45-50. PubMed ID: 1410768
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new class of inhibitors for in vitro small intestinal transport of sugars and amino acids in the rat.
    Elsenhans B; Blume R; Lembcke B; Caspary WF
    Biochim Biophys Acta; 1983 Jan; 727(1):135-43. PubMed ID: 6402011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oral vanadate reduces Na(+)-dependent glucose transport in rat small intestine.
    Madsen KL; Porter VM; Fedorak RN
    Diabetes; 1993 Aug; 42(8):1126-32. PubMed ID: 8392010
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of chemically induced diabetes mellitus on glutamine transport in rat intestine.
    Van Voorhis K; Said HM; Abumrad N; Ghishan FK
    Gastroenterology; 1990 Apr; 98(4):862-6. PubMed ID: 2155843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of growth hormone on intestinal Na+/glucose cotransporter activity.
    Tavakkolizadeh A; Shen R; Jasleen J; Soybel DI; Jacobs DO; Zinner MJ; Ashley SW; Whang EE
    JPEN J Parenter Enteral Nutr; 2001; 25(1):18-22. PubMed ID: 11190985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Streptozotocin diabetes and the expression of GLUT1 at the brush border and basolateral membranes of intestinal enterocytes.
    Boyer S; Sharp PA; Debnam ES; Baldwin SA; Srai SK
    FEBS Lett; 1996 Nov; 396(2-3):218-22. PubMed ID: 8914990
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental diabetes and intestinal barriers to absorption.
    Thomson AB
    Am J Physiol; 1983 Feb; 244(2):G151-9. PubMed ID: 6824085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptation of the small intestine in desert-dwelling animals: morphology, ultrastructure and electrolyte transport in the jejunum of rabbits, rats, gerbils and sand rats.
    Buret A; Hardin J; Olson ME; Gall DG
    Comp Biochem Physiol Comp Physiol; 1993 May; 105(1):157-63. PubMed ID: 8099869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Active sulfate absorption in rabbit ileum: dependence on sodium and chloride and effects of agents that alter chloride transport.
    Smith PL; Orellana SA; Field M
    J Membr Biol; 1981; 63(3):199-206. PubMed ID: 7310858
    [No Abstract]   [Full Text] [Related]  

  • 59. Regional alterations in intestinal sucrase expression in streptozocin-treated chronically diabetic rats.
    Hoffman LR; Yen S; Chang EB
    Dig Dis Sci; 1992 Jul; 37(7):1078-83. PubMed ID: 1618056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptation of hexose uptake by the rat jejunum induced by the perfusion of sugars into the distal ileum.
    Debnam ES
    Digestion; 1985; 31(1):25-30. PubMed ID: 3979678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.