These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29537944)

  • 1. The effect of dynamic friction with wet fabrics on skin wetness perception.
    Zhang Z; Tang X; Li J; Yang W
    Int J Occup Saf Ergon; 2020 Jun; 26(2):370-383. PubMed ID: 29537944
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of friction on skin wetness perception during dynamic interactions between the human index finger pad and materials of varying moisture content.
    Merrick C; Rosati R; Filingeri D
    J Neurophysiol; 2022 Mar; 127(3):725-736. PubMed ID: 35044853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of wetness on the ultraviolet protection factor (UPF) of textiles: in vitro and in vivo measurements.
    Gambichler T; Hatch KL; Avermaete A; Altmeyer P; Hoffmann K
    Photodermatol Photoimmunol Photomed; 2002 Feb; 18(1):29-35. PubMed ID: 11982919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the accumulated stickiness magnitude from fabric-skin friction: effect of wetness level of various fabrics.
    Tang KM; Chau KH; Kan CW; Fan JT
    R Soc Open Sci; 2018 Aug; 5(8):180860. PubMed ID: 30225075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warm temperature stimulus suppresses the perception of skin wetness during initial contact with a wet surface.
    Filingeri D; Redortier B; Hodder S; Havenith G
    Skin Res Technol; 2015 Feb; 21(1):9-14. PubMed ID: 24612108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness.
    Filingeri D; Fournet D; Hodder S; Havenith G
    J Neurophysiol; 2015 Jun; 113(10):3462-73. PubMed ID: 25878153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the Human Stickiness Perception of Wet Fabric on the Volar Forearm via Two Contact Modes: Friction and Adhesion-Separation.
    Jiang R; Wang Y
    Perception; 2020 Dec; 49(12):1311-1332. PubMed ID: 33302776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fabric thickness and material on apparent 'wet' conductive thermal resistance of knitted fabric 'skin' on sweating manikins.
    Wang F; Lai D; Shi W; Fu M
    J Therm Biol; 2017 Dec; 70(Pt A):69-76. PubMed ID: 29074028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal and tactile interactions in the perception of local skin wetness at rest and during exercise in thermo-neutral and warm environments.
    Filingeri D; Redortier B; Hodder S; Havenith G
    Neuroscience; 2014 Jan; 258():121-30. PubMed ID: 24269934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subjective wet perception assessment of fabrics with different drying time.
    Chau KH; Tang KM; Kan CW
    R Soc Open Sci; 2018 Aug; 5(8):180798. PubMed ID: 30225071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Fiber Type, Water Content, and Velocity on Wetness Perception by the Volar Forearm Test: Threshold Detection Test.
    Zhang Z; Tang X; Wang Y; Li J; Tian M
    Perception; 2020 Feb; 49(2):139-154. PubMed ID: 32050861
    [No Abstract]   [Full Text] [Related]  

  • 12. Clothing comfort during physical exercise - Determining the critical factors.
    Raccuglia M; Sales B; Heyde C; Havenith G; Hodder S
    Appl Ergon; 2018 Nov; 73():33-41. PubMed ID: 30098640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body mapping of cutaneous wetness perception across the human torso during thermo-neutral and warm environmental exposures.
    Filingeri D; Fournet D; Hodder S; Havenith G
    J Appl Physiol (1985); 2014 Oct; 117(8):887-97. PubMed ID: 25103965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study of friction between volar forearm skin and nonwoven fabrics used in disposable absorbent products for incontinence.
    Falloon SS; Asimakopoulos V; Cottenden AM
    Proc Inst Mech Eng H; 2019 Jan; 233(1):35-47. PubMed ID: 30340442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosensory mapping of skin wetness sensitivity across the body of young males and females at rest and following maximal incremental running.
    Valenza A; Bianco A; Filingeri D
    J Physiol; 2019 Jul; 597(13):3315-3332. PubMed ID: 31093981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase change materials and the perception of wetness.
    Tiest WM; Kosters ND; Kappers AM; Daanen HA
    Ergonomics; 2012; 55(4):508-12. PubMed ID: 22423680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Fiber Type, Water Content, and Velocity on Wetness Perception by the Volar Forearm Test: Stimulus Intensity Test.
    Zhang Z; Tang X; Wang Y; Li J; Tian M; Xiao P
    Perception; 2019 Sep; 48(9):862-881. PubMed ID: 31337268
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of decreasing contact temperatures and skin cooling in the perception of skin wetness.
    Filingeri D; Redortier B; Hodder S; Havenith G
    Neurosci Lett; 2013 Sep; 551():65-9. PubMed ID: 23886487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional skin wetness perception and its modulation by warm and cold whole body skin temperatures in people with multiple sclerosis.
    Christogianni A; Bibb R; Filtness A; Filingeri D
    Am J Physiol Regul Integr Comp Physiol; 2022 Nov; 323(5):R648-R660. PubMed ID: 36036454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive Quantitative Evaluation of Yarns and Fabrics and Determination of Contact Area of Fabrics Using the X-ray Microcomputed Tomography System for Skin-Textile Friction Analysis.
    Baby R; Mathur K; DenHartog E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4652-4664. PubMed ID: 33428371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.