These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29538014)

  • 1. Bioengineering Cardiac Tissue Constructs With Adult Rat Cardiomyocytes.
    Tao ZW; Mohamed M; Jacot JG; Birla RK
    ASAIO J; 2018; 64(5):e105-e114. PubMed ID: 29538014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel.
    Tao ZW; Mohamed M; Hogan M; Gutierrez L; Birla RK
    J Tissue Eng Regen Med; 2017 Jan; 11(1):153-163. PubMed ID: 24771636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinted functional and contractile cardiac tissue constructs.
    Wang Z; Lee SJ; Cheng HJ; Yoo JJ; Atala A
    Acta Biomater; 2018 Apr; 70():48-56. PubMed ID: 29452273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 16-Channel Flexible System to Measure Electrophysiological Properties of Bioengineered Hearts.
    Salazar BH; Hoffman KA; Reddy AK; Madala S; Birla RK
    Cardiovasc Eng Technol; 2018 Mar; 9(1):94-104. PubMed ID: 29150791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell Transcriptomics of Engineered Cardiac Tissues From Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Abnormal Developmental Trajectory and Intrinsic Contractile Defects in Hypoplastic Right Heart Syndrome.
    Lam YY; Keung W; Chan CH; Geng L; Wong N; Brenière-Letuffe D; Li RA; Cheung YF
    J Am Heart Assoc; 2020 Oct; 9(20):e016528. PubMed ID: 33059525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac tissue engineering in an in vivo vascularized chamber.
    Morritt AN; Bortolotto SK; Dilley RJ; Han X; Kompa AR; McCombe D; Wright CE; Itescu S; Angus JA; Morrison WA
    Circulation; 2007 Jan; 115(3):353-60. PubMed ID: 17200440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology.
    Sidorov VY; Samson PC; Sidorova TN; Davidson JM; Lim CC; Wikswo JP
    Acta Biomater; 2017 Jan; 48():68-78. PubMed ID: 27818308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs.
    Salazar BH; Cashion AT; Dennis RG; Birla RK
    Cardiovasc Eng Technol; 2015 Dec; 6(4):533-45. PubMed ID: 26577484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.
    Schroer AK; Shotwell MS; Sidorov VY; Wikswo JP; Merryman WD
    Acta Biomater; 2017 Jan; 48():79-87. PubMed ID: 27818306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing cell seeding and retention in a three-dimensional bioengineered cardiac ventricle: The two-stage cellularization model.
    Patel NM; Yazdi IK; Tasciotti E; Birla RK
    Biotechnol Bioeng; 2016 Oct; 113(10):2275-85. PubMed ID: 27071026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methodology for the formation of functional, cell-based cardiac pressure generation constructs in vitro.
    Birla RK; Dow DE; Huang YC; Migneco F; Khait L; Borschel GH; Dhawan V; Brown DL
    In Vitro Cell Dev Biol Anim; 2008; 44(8-9):340-50. PubMed ID: 18493826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 32-Channel System to Measure the Electrophysiological Properties of Bioengineered Cardiac Muscle.
    Salazar BH; Reddy AK; Zewei Tao ; Madala S; Birla RK
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1614-22. PubMed ID: 25667345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function.
    Jackman C; Li H; Bursac N
    Acta Biomater; 2018 Sep; 78():98-110. PubMed ID: 30086384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.
    Mohamed MA; Islas JF; Schwartz RJ; Birla RK
    ASAIO J; 2017; 63(3):333-341. PubMed ID: 28459744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of functional contractile cardiac tissues cultured in a perfusion system.
    Marsano A; Maidhof R; Tandon N; Gao J; Wang Y; Vunjak-Novakovic G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3590-3. PubMed ID: 19163485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic culture yields engineered myocardium with near-adult functional output.
    Jackman CP; Carlson AL; Bursac N
    Biomaterials; 2016 Dec; 111():66-79. PubMed ID: 27723557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.