These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 2953864)
1. Siderophore mediated iron(III) uptake in Gliocladium virens. 2. Role of ferric mono- and dihydroxamates as iron transport agents. Jalal MA; Love SK; van der Helm D J Inorg Biochem; 1987 Apr; 29(4):259-67. PubMed ID: 2953864 [TBL] [Abstract][Full Text] [Related]
2. Siderophore mediated iron(III) uptake in Gliocladium virens. 1. Properties of cis-fusarinine, trans-fusarinine, dimerum acid, and their ferric complexes. Jalal MA; Love SK; van der Helm D J Inorg Biochem; 1986 Dec; 28(4):417-30. PubMed ID: 2950205 [TBL] [Abstract][Full Text] [Related]
3. Fusarinines and dimerum acid, mono- and dihydroxamate siderophores from Penicillium chrysogenum, improve iron utilization by strategy I and strategy II plants. Hördt W; Römheld V; Winkelmann G Biometals; 2000 Mar; 13(1):37-46. PubMed ID: 10831223 [TBL] [Abstract][Full Text] [Related]
4. The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. Müller G; Barclay SJ; Raymond KN J Biol Chem; 1985 Nov; 260(26):13916-20. PubMed ID: 4055765 [TBL] [Abstract][Full Text] [Related]
5. Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. Carrano CJ; Raymond KN J Bacteriol; 1978 Oct; 136(1):69-74. PubMed ID: 30750 [TBL] [Abstract][Full Text] [Related]
6. Iron uptake by fungi: contrasted mechanisms with internal or external reduction. De Luca NG; Wood PM Adv Microb Physiol; 2000; 43():39-74. PubMed ID: 10907554 [TBL] [Abstract][Full Text] [Related]
7. Siderophore-mediated iron uptake in different strains of Anabaena sp. Goldman SJ; Lammers PJ; Berman MS; Sanders-Loehr J J Bacteriol; 1983 Dec; 156(3):1144-50. PubMed ID: 6227608 [TBL] [Abstract][Full Text] [Related]
8. Metabolic utilization of 57Fe-labeled coprogen in Neurospora crassa. An in vivo Mössbauer study. Matzanke BF; Bill E; Müller GI; Trautwein AX; Winkelmann G Eur J Biochem; 1987 Feb; 162(3):643-50. PubMed ID: 2951253 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa. Huschka H; Naegeli HU; Leuenberger-Ryf H; Keller-Schierlein W; Winkelmann G J Bacteriol; 1985 May; 162(2):715-21. PubMed ID: 2985545 [TBL] [Abstract][Full Text] [Related]
10. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. Yun CW; Tiedeman JS; Moore RE; Philpott CC J Biol Chem; 2000 May; 275(21):16354-9. PubMed ID: 10748025 [TBL] [Abstract][Full Text] [Related]
11. Production and isolation of siderophores from the soil fungus Epicoccum purpurascens. Frederick CB; Szaniszlo PJ; Vickrey PE; Bentley MD; Shive W Biochemistry; 1981 Apr; 20(9):2432-6. PubMed ID: 6453608 [TBL] [Abstract][Full Text] [Related]
12. Iron transport systems of Serratia marcescens. Angerer A; Klupp B; Braun V J Bacteriol; 1992 Feb; 174(4):1378-87. PubMed ID: 1531225 [TBL] [Abstract][Full Text] [Related]
13. Characterization of siderophore-mediated iron transport in Geotrichum candidum, a non-siderophore producer. Mor H; Barash I Biol Met; 1990; 2(4):209-13. PubMed ID: 2143917 [TBL] [Abstract][Full Text] [Related]
14. Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Matzanke BF; Bill E; Trautwein AX; Winkelmann G Biol Met; 1988; 1(1):18-25. PubMed ID: 2978956 [TBL] [Abstract][Full Text] [Related]
15. Site-specific rate constants for iron acquisition from transferrin by the Aspergillus fumigatus siderophores N',N'',N'''-triacetylfusarinine C and ferricrocin. Hissen AH; Moore MM J Biol Inorg Chem; 2005 May; 10(3):211-20. PubMed ID: 15770504 [TBL] [Abstract][Full Text] [Related]
16. Siderophore-mediated iron (III) transport in the mycelia of the cultivated fungus, Agaricus bisporus. Eng-Wilmot DL; Adjimani JP; van der Helm D J Inorg Biochem; 1992 Nov; 48(3):183-95. PubMed ID: 1447567 [TBL] [Abstract][Full Text] [Related]
17. Siderophore iron transport followed by electron paramagnetic resonance spectroscopy. Ecker DJ; Lancaster JR; Emery T J Biol Chem; 1982 Aug; 257(15):8623-6. PubMed ID: 6284739 [TBL] [Abstract][Full Text] [Related]
18. Kinetics and mechanism of iron(III) dissociation from the dihydroxamate siderophores alcaligin and rhodotorulic acid. Boukhalfa H; Brickman TJ; Armstrong SK; Crumbliss AL Inorg Chem; 2000 Dec; 39(25):5591-602. PubMed ID: 11151360 [TBL] [Abstract][Full Text] [Related]
19. The Siderophore Ferricrocin Mediates Iron Acquisition in Aspergillus fumigatus. Happacher I; Aguiar M; Alilou M; Abt B; Baltussen TJH; Decristoforo C; Melchers WJG; Haas H Microbiol Spectr; 2023 Jun; 11(3):e0049623. PubMed ID: 37199664 [TBL] [Abstract][Full Text] [Related]
20. Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Holzberg M; Artis WM Infect Immun; 1983 Jun; 40(3):1134-9. PubMed ID: 6221998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]