These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29539402)

  • 1. Mechanosensitivity of Cancer Cells in Contact with Soft Substrates Using AFM.
    Abidine Y; Constantinescu A; Laurent VM; Sundar Rajan V; Michel R; Laplaud V; Duperray A; Verdier C
    Biophys J; 2018 Mar; 114(5):1165-1175. PubMed ID: 29539402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local rheology of human neutrophils investigated using atomic force microscopy.
    Lee YJ; Patel D; Park S
    Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-dependent elastography of cancer cells reveals heterogeneity and stiffening due to attachment.
    Xu W; Kabariti S; Young KM; Swingle SP; Liu AY; Sulchek T
    J Biomech; 2023 Mar; 150():111479. PubMed ID: 36871429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates.
    Liu H; Sun Y; Simmons CA
    J Biomech; 2013 Jul; 46(11):1967-71. PubMed ID: 23746597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal remodeling induced by substrate rigidity regulates rheological behaviors in endothelial cells.
    Jannatbabaei A; Tafazzoli-Shadpour M; Seyedjafari E; Fatouraee N
    J Biomed Mater Res A; 2019 Jan; 107(1):71-80. PubMed ID: 30242964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates.
    Rianna C; Radmacher M
    Eur Biophys J; 2017 May; 46(4):309-324. PubMed ID: 27645213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions.
    Canetta E; Duperray A; Leyrat A; Verdier C
    Biorheology; 2005; 42(5):321-33. PubMed ID: 16308464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Endothelial Cell Adherence and Elastic Modulus by Substrate Stiffness.
    Jalali S; Tafazzoli-Shadpour M; Haghighipour N; Omidvar R; Safshekan F
    Cell Commun Adhes; 2015; 22(2-6):79-89. PubMed ID: 27960555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy.
    Liu X; Wei Y; Li W; Li B; Liu L
    J Cell Physiol; 2021 May; 236(5):3725-3733. PubMed ID: 33169846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic Properties in Cancer: From Cells to Spheroids.
    Abidine Y; Giannetti A; Revilloud J; Laurent VM; Verdier C
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general approach for the microrheology of cancer cells by atomic force microscopy.
    Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G
    Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiffness of cancer cells measured with an AFM indentation method.
    Hayashi K; Iwata M
    J Mech Behav Biomed Mater; 2015 Sep; 49():105-11. PubMed ID: 26004036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cell elasticity correlated with cell morphology by atomic force microscope.
    Guo Q; Xia Y; Sandig M; Yang J
    J Biomech; 2012 Jan; 45(2):304-9. PubMed ID: 22115064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics.
    Efremov YM; Kotova SL; Akovantseva AA; Timashev PS
    J Nanobiotechnology; 2020 Sep; 18(1):134. PubMed ID: 32943055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin-based biomechanical features of suspended normal and cancer cells.
    Haghparast SM; Kihara T; Shimizu Y; Yuba S; Miyake J
    J Biosci Bioeng; 2013 Sep; 116(3):380-5. PubMed ID: 23567154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying cell-to-cell variation in power-law rheology.
    Cai P; Mizutani Y; Tsuchiya M; Maloney JM; Fabry B; Van Vliet KJ; Okajima T
    Biophys J; 2013 Sep; 105(5):1093-102. PubMed ID: 24010652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.