These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 2953948)
1. Determination of the patency of vascular prostheses implanted in the rat aorta by means of ultrasonic blood-flow measurements. Hess F; Steeghs S; Jerusalem C; Wijn P; Skotnicki S Microsurgery; 1987; 8(1):5-10. PubMed ID: 2953948 [TBL] [Abstract][Full Text] [Related]
2. Patency and neo-intima development in 10 cm-long microvascular polyurethane prostheses implanted into the rat aorta. Hess F; Jerusalem C; Braun B; Grande P Thorac Cardiovasc Surg; 1984 Oct; 32(5):283-7. PubMed ID: 6083616 [TBL] [Abstract][Full Text] [Related]
3. Small-calibre vascular grafting into the rat abdominal aorta with biodegradable prostheses. Bartels HL; van der Lei B Lab Anim; 1988 Apr; 22(2):122-6. PubMed ID: 3392945 [TBL] [Abstract][Full Text] [Related]
4. Patency and healing of polymeric microvenous prostheses implanted into the rat femoral vein by means of the sleeve anastomotic technique. Robinson PH; van der Lei B; Schakenraad JM; Jongebloed WJ; Hoppen HJ; Pennings AJ; Nieuwenhuis P J Reconstr Microsurg; 1990 Jul; 6(3):287-92. PubMed ID: 2292792 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the deployment and healing of thin-walled expanded PTFE stented grafts and covered stents. White R; Kopchok G; Zalewski M; Ayres B; Wilson E; de Virgilio C; Donayre C Ann Vasc Surg; 1996 Jul; 10(4):336-46. PubMed ID: 8879388 [TBL] [Abstract][Full Text] [Related]
6. Three years experience with experimental implantation of fibrous polyurethane microvascular prostheses in the rat aorta. Hess F; Jerusalem C; Braun B; Grande P Microsurgery; 1985; 6(3):155-62. PubMed ID: 4058300 [TBL] [Abstract][Full Text] [Related]
7. Bioengineered vascular graft grown in the mouse peritoneal cavity. Song L; Wang L; Shah PK; Chaux A; Sharifi BG J Vasc Surg; 2010 Oct; 52(4):994-1002, 1002.e1-2. PubMed ID: 20692791 [TBL] [Abstract][Full Text] [Related]
8. Improved healing of small-caliber polytetrafluoroethylene vascular prostheses by increased hydrophilicity and by enlarged fibril length. An experimental study in rats. Stronck JW; van der Lei B; Wildevuur CR J Thorac Cardiovasc Surg; 1992 Jan; 103(1):146-52. PubMed ID: 1728701 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the patency rate of fibrous microvascular polyurethane prostheses after implantation in the rat aorta. Hess F; Jerusalem C; Braun B; Grande P Microsurgery; 1983; 4(3):178-81. PubMed ID: 6366446 [TBL] [Abstract][Full Text] [Related]
10. The influence of competitive flow on graft patency. Juleff RS; Brown OW; McKain MM; Glover JL; Bendick PJ J Cardiovasc Surg (Torino); 1992; 33(4):415-9. PubMed ID: 1388175 [TBL] [Abstract][Full Text] [Related]
11. Experimental microvenous reconstructions with Gore-Tex polytetrafluoroethylene prosthesis implanted by means of the sleeve anastomotic technique. van der Lei B; Bartels HL; Dijk F; Schakenraad JM; Nieuwenhuis P; Robinson PH Microsurgery; 1991; 12(1):23-9. PubMed ID: 1990245 [TBL] [Abstract][Full Text] [Related]
12. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. Enomoto S; Sumi M; Kajimoto K; Nakazawa Y; Takahashi R; Takabayashi C; Asakura T; Sata M J Vasc Surg; 2010 Jan; 51(1):155-64. PubMed ID: 19954921 [TBL] [Abstract][Full Text] [Related]
13. Endothelialization of microporous polytetrafluoroethylene grafts in the infrarenal aorta and caval vein of the rat. Zdanowski Z; Ribbe E; Bengmark S Microsurgery; 1992; 13(5):277-86. PubMed ID: 1406234 [TBL] [Abstract][Full Text] [Related]
14. Effect of implantation site on outcome of tissue-engineered vascular grafts. Sologashvili T; Saat SA; Tille JC; De Valence S; Mugnai D; Giliberto JP; Dillon J; Yakub A; Dimon Z; Gurny R; Walpoth BH; Moeller M Eur J Pharm Biopharm; 2019 Jun; 139():272-278. PubMed ID: 31004790 [TBL] [Abstract][Full Text] [Related]
15. [Evaluation of vascular prostheses made of carbon fiber]. Szala K; Stryga W; Nowicki K Polim Med; 1991; 21(3-4):43-9. PubMed ID: 1822596 [TBL] [Abstract][Full Text] [Related]
16. Patency and long-term biological fate of a two-ply biodegradable microarterial prosthesis in the rat. Robinson PH; van der Lei B; Knol KE; Pennings AJ Br J Plast Surg; 1989 Sep; 42(5):544-9. PubMed ID: 2804520 [TBL] [Abstract][Full Text] [Related]
17. The endothelialization process of a fibrous polyurethane microvascular prosthesis after implantation in the abdominal aorta of the rat. A scanning electron microscopic study. Hess F; Jerusalem C; Braun B J Cardiovasc Surg (Torino); 1983; 24(5):516-24. PubMed ID: 6654966 [TBL] [Abstract][Full Text] [Related]
18. Experimental studies on application of small-caliber vascular prosthesis produced by polyurethane. Miyamoto K; Sugimoto T; Okada M; Maeda S Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):174-81. PubMed ID: 10413764 [TBL] [Abstract][Full Text] [Related]
19. Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. Okoshi T; Soldani G; Goddard M; Galletti PM J Thorac Cardiovasc Surg; 1993 May; 105(5):791-5. PubMed ID: 8487558 [TBL] [Abstract][Full Text] [Related]
20. Neointima formation in expanded polytetrafluoroethylene vascular grafts with different fibril lengths following implantation in the rat aorta. Hess F; Steeghs S; Jerusalem C Microsurgery; 1989; 10(1):47-52. PubMed ID: 2725255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]