These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 29539583)
1. Increased Calcific Aortic Valve Disease in response to a diabetogenic, procalcific diet in the LDLr Scatena M; Jackson MF; Speer MY; Leaf EM; Wallingford MC; Giachelli CM Cardiovasc Pathol; 2018; 34():28-37. PubMed ID: 29539583 [TBL] [Abstract][Full Text] [Related]
2. Early development of calcific aortic valve disease and left ventricular hypertrophy in a mouse model of combined dyslipidemia and type 2 diabetes mellitus. Le Quang K; Bouchareb R; Lachance D; Laplante MA; El Husseini D; Boulanger MC; Fournier D; Fang XP; Avramoglu RK; Pibarot P; Deshaies Y; Sweeney G; Mathieu P; Marette A Arterioscler Thromb Vasc Biol; 2014 Oct; 34(10):2283-91. PubMed ID: 25231636 [TBL] [Abstract][Full Text] [Related]
4. Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. Weiss RM; Lund DD; Chu Y; Brooks RM; Zimmerman KA; El Accaoui R; Davis MK; Hajj GP; Zimmerman MB; Heistad DD PLoS One; 2013; 8(6):e65201. PubMed ID: 23762316 [TBL] [Abstract][Full Text] [Related]
5. AVCAPIR: A Novel Procalcific PIWI-Interacting RNA in Calcific Aortic Valve Disease. Han D; Zhou T; Li L; Ma Y; Chen S; Yang C; Ma N; Song M; Zhang S; Wu J; Cao F; Wang Y Circulation; 2024 May; 149(20):1578-1597. PubMed ID: 38258575 [TBL] [Abstract][Full Text] [Related]
6. Regular exercise or changing diet does not influence aortic valve disease progression in LDLR deficient mice. Schlotter F; Matsumoto Y; Mangner N; Schuler G; Linke A; Adams V PLoS One; 2012; 7(5):e37298. PubMed ID: 22606357 [TBL] [Abstract][Full Text] [Related]
8. Calcific aortic valve stenosis in old hypercholesterolemic mice. Weiss RM; Ohashi M; Miller JD; Young SG; Heistad DD Circulation; 2006 Nov; 114(19):2065-9. PubMed ID: 17075015 [TBL] [Abstract][Full Text] [Related]
9. Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification. Gomez-Stallons MV; Wirrig-Schwendeman EE; Hassel KR; Conway SJ; Yutzey KE Arterioscler Thromb Vasc Biol; 2016 Jul; 36(7):1398-405. PubMed ID: 27199449 [TBL] [Abstract][Full Text] [Related]
10. Nucleotide ecto-enzyme metabolic pattern and spatial distribution in calcific aortic valve disease; its relation to pathological changes and clinical presentation. Kutryb-Zajac B; Jablonska P; Serocki M; Bulinska A; Mierzejewska P; Friebe D; Alter C; Jasztal A; Lango R; Rogowski J; Bartoszewski R; Slominska EM; Chlopicki S; Schrader J; Yacoub MH; Smolenski RT Clin Res Cardiol; 2020 Feb; 109(2):137-160. PubMed ID: 31144065 [TBL] [Abstract][Full Text] [Related]
11. DUSP26 induces aortic valve calcification by antagonizing MDM2-mediated ubiquitination of DPP4 in human valvular interstitial cells. Wang Y; Han D; Zhou T; Chen C; Cao H; Zhang JZ; Ma N; Liu C; Song M; Shi J; Jin X; Cao F; Dong N Eur Heart J; 2021 Aug; 42(30):2935-2951. PubMed ID: 34179958 [TBL] [Abstract][Full Text] [Related]
12. Deletion of calponin 2 attenuates the development of calcific aortic valve disease in ApoE Plazyo O; Liu R; Moazzem Hossain M; Jin JP J Mol Cell Cardiol; 2018 Aug; 121():233-241. PubMed ID: 30053524 [TBL] [Abstract][Full Text] [Related]
13. COX-2 Is Downregulated in Human Stenotic Aortic Valves and Its Inhibition Promotes Dystrophic Calcification. Vieceli Dalla Sega F; Fortini F; Cimaglia P; Marracino L; Tonet E; Antonucci A; Moscarelli M; Campo G; Rizzo P; Ferrari R Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255450 [TBL] [Abstract][Full Text] [Related]
14. Herpud1 deficiency alleviates homocysteine-induced aortic valve calcification. Xie W; Shan Y; Wu Z; Liu N; Yang J; Zhang H; Sun S; Chi J; Feng W; Lin H; Guo H Cell Biol Toxicol; 2023 Dec; 39(6):2665-2684. PubMed ID: 36746840 [TBL] [Abstract][Full Text] [Related]
15. Calcific Aortic Valve Disease: Part 1--Molecular Pathogenetic Aspects, Hemodynamics, and Adaptive Feedbacks. Pasipoularides A J Cardiovasc Transl Res; 2016 Apr; 9(2):102-18. PubMed ID: 26891845 [TBL] [Abstract][Full Text] [Related]
16. Deficiency of Natriuretic Peptide Receptor 2 Promotes Bicuspid Aortic Valves, Aortic Valve Disease, Left Ventricular Dysfunction, and Ascending Aortic Dilatations in Mice. Blaser MC; Wei K; Adams RLE; Zhou YQ; Caruso LL; Mirzaei Z; Lam AY; Tam RKK; Zhang H; Heximer SP; Henkelman RM; Simmons CA Circ Res; 2018 Feb; 122(3):405-416. PubMed ID: 29273600 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model. Jenke A; Kistner J; Saradar S; Chekhoeva A; Yazdanyar M; Bergmann AK; Rötepohl MV; Lichtenberg A; Akhyari P Am J Physiol Heart Circ Physiol; 2020 Nov; 319(5):H1123-H1141. PubMed ID: 32986963 [TBL] [Abstract][Full Text] [Related]
18. ApoC-III is a novel inducer of calcification in human aortic valves. Schlotter F; de Freitas RCC; Rogers MA; Blaser MC; Wu PJ; Higashi H; Halu A; Iqbal F; Andraski AB; Rodia CN; Kuraoka S; Wen JR; Creager M; Pham T; Hutcheson JD; Body SC; Kohan AB; Sacks FM; Aikawa M; Singh SA; Aikawa E J Biol Chem; 2021; 296():100193. PubMed ID: 33334888 [TBL] [Abstract][Full Text] [Related]
19. Genetic ablation of serotonin receptor 2B improves aortic valve hemodynamics of Notch1 heterozygous mice in a high-cholesterol diet model. Joll JE; Clark CR; Peters CS; Raddatz MA; Bersi MR; Merryman WD PLoS One; 2020; 15(11):e0238407. PubMed ID: 33237915 [TBL] [Abstract][Full Text] [Related]