These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29540056)

  • 1. Light- and Electric-Field-Controlled Wetting Behavior in Nanochannels for Regulating Nanoconfined Mass Transport.
    Xie G; Li P; Zhao Z; Zhu Z; Kong XY; Zhang Z; Xiao K; Wen L; Jiang L
    J Am Chem Soc; 2018 Apr; 140(13):4552-4559. PubMed ID: 29540056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques.
    Ding D; Gao P; Ma Q; Wang D; Xia F
    Small; 2019 Aug; 15(32):e1804878. PubMed ID: 30756522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models.
    Lynch CI; Klesse G; Rao S; Tucker SJ; Sansom MSP
    ACS Nano; 2021 Dec; 15(12):19098-19108. PubMed ID: 34784172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presence of electrolyte promotes wetting and hydrophobic gating in nanopores with residual surface charges.
    Innes L; Gutierrez D; Mann W; Buchsbaum SF; Siwy ZS
    Analyst; 2015 Jul; 140(14):4804-12. PubMed ID: 25669872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting transition in nanochannels for biomimetic free-blocking on-demand drug transport.
    Cheng Y; Jiao X; Zhao L; Liu Y; Wang F; Wen Y; Zhang X
    J Mater Chem B; 2018 Oct; 6(39):6269-6277. PubMed ID: 32254617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries.
    Ali M; Yameen B; Neumann R; Ensinger W; Knoll W; Azzaroni O
    J Am Chem Soc; 2008 Dec; 130(48):16351-7. PubMed ID: 19006302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wettability and Applications of Nanochannels.
    Zhang X; Liu H; Jiang L
    Adv Mater; 2019 Feb; 31(5):e1804508. PubMed ID: 30345614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric Field Induced Wetting of a Hydrophobic Gate in a Model Nanopore Based on the 5-HT
    Klesse G; Tucker SJ; Sansom MSP
    ACS Nano; 2020 Aug; 14(8):10480-10491. PubMed ID: 32673478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Control of Nanopore Wetting in Water and Saline Solutions under an Electric Field.
    Vanzo D; Bratko D; Luzar A
    J Phys Chem B; 2015 Jul; 119(29):8890-9. PubMed ID: 25184307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photon control of liquid motion on reversibly photoresponsive surfaces.
    Yang D; Piech M; Bell NS; Gust D; Vail S; Garcia AA; Schneider J; Park CD; Hayes MA; Picraux ST
    Langmuir; 2007 Oct; 23(21):10864-72. PubMed ID: 17803327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic smart nanopores and nanochannels.
    Hou X; Guo W; Jiang L
    Chem Soc Rev; 2011 May; 40(5):2385-401. PubMed ID: 21308139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.
    Li D; Jing W; Li S; Shen H; Xing W
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11294-300. PubMed ID: 25961963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-controlled water and ion permeation of a hydrophobic nanopore.
    Dzubiella J; Hansen JP
    J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface.
    Ma Q; Li Y; Wang R; Xu H; Du Q; Gao P; Xia F
    Nat Commun; 2021 Mar; 12(1):1573. PubMed ID: 33692350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoresponsive Solid Nanochannels Membranes: Design and Applications.
    Cheng SQ; Zhang SY; Min XH; Tao MJ; Han XL; Sun Y; Liu Y
    Small; 2022 Mar; 18(12):e2105019. PubMed ID: 34910848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoresponsive superhydrophobic surfaces for effective wetting control.
    Pan S; Guo R; Xu W
    Soft Matter; 2014 Dec; 10(45):9187-92. PubMed ID: 25322263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoconfined water under electric field at constant chemical potential undergoes electrostriction.
    Vanzo D; Bratko D; Luzar A
    J Chem Phys; 2014 Feb; 140(7):074710. PubMed ID: 24559363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.