These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29541520)

  • 1. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation.
    Khan A; Pope JM; Verkicharla PK; Suheimat M; Atchison DA
    Biomed Opt Express; 2018 Mar; 9(3):1272-1282. PubMed ID: 29541520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lens Shape and Refractive Index Distribution in Type 1 Diabetes.
    Adnan ; Pope JM; Sepehrband F; Suheimat M; Verkicharla PK; Kasthurirangan S; Atchison DA
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4759-66. PubMed ID: 26218903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation.
    Kasthurirangan S; Markwell EL; Atchison DA; Pope JM
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2531-40. PubMed ID: 18408189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Age, Accommodation, and Refractive Error on the Adult Human Eye.
    Richdale K; Bullimore MA; Sinnott LT; Zadnik K
    Optom Vis Sci; 2016 Jan; 93(1):3-11. PubMed ID: 26703933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in lens dimensions and refractive index with age and accommodation.
    Jones CE; Atchison DA; Pope JM
    Optom Vis Sci; 2007 Oct; 84(10):990-5. PubMed ID: 18049365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration in refractive index profile during accommodation based on mechanical modelling.
    Bahrami M; Heidari A; Pierscionek BK
    Biomed Opt Express; 2016 Jan; 7(1):99-110. PubMed ID: 26819821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI study of the changes in crystalline lens shape with accommodation and aging in humans.
    Kasthurirangan S; Markwell EL; Atchison DA; Pope JM
    J Vis; 2011 Mar; 11(3):. PubMed ID: 21441300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling.
    Jiang MS; Xu XL; Yang T; Zhang XD; Li F
    Vision Res; 2019 Jul; 160():52-59. PubMed ID: 31095964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys.
    Ostrin LA; Glasser A
    Exp Eye Res; 2007 Feb; 84(2):302-13. PubMed ID: 17137577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single function crystalline lens capable of mimicking ciliary body accommodation.
    Jaimes-Nájera A; Gómez-Correa JE; Coello V; Pierscionek BK; Chávez-Cerda S
    Biomed Opt Express; 2020 Jul; 11(7):3699-3716. PubMed ID: 33014561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
    Garner LF; Smith G
    Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalent refractive index of the human lens upon accommodative response.
    Hermans EA; Dubbelman M; Van der Heijde R; Heethaar RM
    Optom Vis Sci; 2008 Dec; 85(12):1179-84. PubMed ID: 19050472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accommodating intraocular lenses: a critical review of present and future concepts.
    Menapace R; Findl O; Kriechbaum K; Leydolt-Koeppl Ch
    Graefes Arch Clin Exp Ophthalmol; 2007 Apr; 245(4):473-89. PubMed ID: 16944188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study.
    Strenk SA; Semmlow JL; Strenk LM; Munoz P; Gronlund-Jacob J; DeMarco JK
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1162-9. PubMed ID: 10235549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OCT-based full crystalline lens shape change during accommodation in vivo.
    Martinez-Enriquez E; Pérez-Merino P; Velasco-Ocana M; Marcos S
    Biomed Opt Express; 2017 Feb; 8(2):918-933. PubMed ID: 28270993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially variant changes in lens power during ocular accommodation in a rhesus monkey eye.
    Vilupuru AS; Roorda A; Glasser A
    J Vis; 2004 Apr; 4(4):299-309. PubMed ID: 15134477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emmetropes and myopes differ little in their accommodation dynamics but strongly in their ciliary muscle morphology.
    Wagner S; Zrenner E; Strasser T
    Vision Res; 2019 Oct; 163():42-51. PubMed ID: 31401218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of the shape of the lens and capsular energy changes in accommodation.
    Fisher RF
    J Physiol; 1969 Mar; 201(1):21-47. PubMed ID: 5775812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emmetropization in chicks uses optical vergence and relative distance cues to decode defocus.
    Wildsoet CF; Schmid KL
    Vision Res; 2001 Nov; 41(24):3197-204. PubMed ID: 11711143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral refraction and ocular shape in children.
    Mutti DO; Sholtz RI; Friedman NE; Zadnik K
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1022-30. PubMed ID: 10752937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.