These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29541520)

  • 21. Experimental investigation of accommodation in eyes fit with multifocal contact lenses using a clinical auto-refractor.
    Altoaimi BH; Kollbaum P; Meyer D; Bradley A
    Ophthalmic Physiol Opt; 2018 Mar; 38(2):152-163. PubMed ID: 29315718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural pathways subserving negative lens-induced emmetropization in chicks--insights from selective lesions of the optic nerve and ciliary nerve.
    Wildsoet C
    Curr Eye Res; 2003 Dec; 27(6):371-85. PubMed ID: 14704921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The force of contraction of the human ciliary muscle during accommodation.
    Fisher RF
    J Physiol; 1977 Aug; 270(1):51-74. PubMed ID: 915798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging.
    Ruggeri M; de Freitas C; Williams S; Hernandez VM; Cabot F; Yesilirmak N; Alawa K; Chang YC; Yoo SH; Gregori G; Parel JM; Manns F
    Biomed Opt Express; 2016 Apr; 7(4):1351-64. PubMed ID: 27446660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the shape and optical properties of the chicken lens after vitreous and scleral removal.
    Suburo AM; Marcantoni M
    Vision Res; 1989; 29(9):1229-32. PubMed ID: 2617869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The equivalent refractive index of the crystalline lens in childhood.
    Mutti DO; Zadnik K; Adams AJ
    Vision Res; 1995 Jun; 35(11):1565-73. PubMed ID: 7667914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
    Martinez-Enriquez E; Sun M; Velasco-Ocana M; Birkenfeld J; PĂ©rez-Merino P; Marcos S
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT600-10. PubMed ID: 27627188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The shape of the human lens nucleus with accommodation.
    Hermans E; Dubbelman M; van der Heijde R; Heethaar R
    J Vis; 2007 Jul; 7(10):16.1-10. PubMed ID: 17997685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudophakic accommodation with translation lenses--dual optic vs mono optic.
    Langenbucher A; Reese S; Jakob C; Seitz B
    Ophthalmic Physiol Opt; 2004 Sep; 24(5):450-7. PubMed ID: 15315660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous measurements of refraction and A-scan biometry during accommodation in humans.
    Ostrin L; Kasthurirangan S; Win-Hall D; Glasser A
    Optom Vis Sci; 2006 Sep; 83(9):657-65. PubMed ID: 16971844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.
    Sheppard AL; Evans CJ; Singh KD; Wolffsohn JS; Dunne MC; Davies LN
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3689-97. PubMed ID: 21296812
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance imaging of aging, accommodating, phakic, and pseudophakic ciliary muscle diameters.
    Strenk SA; Strenk LM; Guo S
    J Cataract Refract Surg; 2006 Nov; 32(11):1792-8. PubMed ID: 17081859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-related changes in the anterior segment biometry during accommodation.
    Shao Y; Tao A; Jiang H; Mao X; Zhong J; Shen M; Lu F; Xu Z; Karp CL; Wang J
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):3522-30. PubMed ID: 26030106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of the lens in refractive development of the eye: animal models of ametropia.
    Sivak JG
    Exp Eye Res; 2008 Jul; 87(1):3-8. PubMed ID: 18405895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.
    Sheil CJ; Goncharov AV
    Biomed Opt Express; 2016 May; 7(5):1985-99. PubMed ID: 27231637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.
    Pour HM; Kanapathipillai S; Zarrabi K; Manns F; Ho A
    Clin Exp Optom; 2015 Mar; 98(2):126-37. PubMed ID: 25727940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paraxial equivalent of the gradient-index lens of the human eye.
    Manns F; Ho A
    Biomed Opt Express; 2022 Oct; 13(10):5131-5150. PubMed ID: 36425626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alterations in Lens Free Water Distribution Are Associated with Shape Deformation in Accommodation.
    Lie AL; Pan X; Vaghefi E; White TW; Donaldson PJ
    Ophthalmol Sci; 2024; 4(1):100404. PubMed ID: 38027421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.