BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29541527)

  • 1. Incorporation of an ultrasound and model guided permissible region improves quantitative source recovery in bioluminescence tomography.
    Jayet B; Morgan SP; Dehghani H
    Biomed Opt Express; 2018 Mar; 9(3):1360-1374. PubMed ID: 29541527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-modal molecular diffuse optical tomography system for small animal imaging.
    Guggenheim JA; Basevi HR; Frampton J; Styles IB; Dehghani H
    Meas Sci Technol; 2013; 24(10):105405. PubMed ID: 24954977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimal permissible source region strategy for multispectral bioluminescence tomography.
    Feng J; Jia K; Yan G; Zhu S; Qin C; Lv Y; Tian J
    Opt Express; 2008 Sep; 16(20):15640-54. PubMed ID: 18825203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Practical reconstruction method for bioluminescence tomography.
    Cong W; Wang G; Kumar D; Liu Y; Jiang M; Wang L; Hoffman E; McLennan G; McCray P; Zabner J; Cong A
    Opt Express; 2005 Sep; 13(18):6756-71. PubMed ID: 19498692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compressive sensing based reconstruction in bioluminescence tomography improves image resolution and robustness to noise.
    Basevi HR; Tichauer KM; Leblond F; Dehghani H; Guggenheim JA; Holt RW; Styles IB
    Biomed Opt Express; 2012 Sep; 3(9):2131-41. PubMed ID: 23024907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of permissible source region and multispectral data using efficient bioluminescence tomography method.
    Qin C; Zhu S; Feng J; Zhong J; Ma X; Wu P; Tian J
    J Biophotonics; 2011 Nov; 4(11-12):824-39. PubMed ID: 21987294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative bioluminescence tomography using spectral derivative data.
    Dehghani H; Guggenheim JA; Taylor SL; Xu X; Wang KK
    Biomed Opt Express; 2018 Sep; 9(9):4163-4174. PubMed ID: 30615705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian sparse-based reconstruction in bioluminescence tomography improves localization accuracy and reduces computational time.
    Feng J; Jia K; Li Z; Pogue BW; Yang M; Wang Y
    J Biophotonics; 2018 Apr; 11(4):e201700214. PubMed ID: 29119702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boundary integral method for bioluminescence tomography.
    Cong W; Wang G
    J Biomed Opt; 2006; 11(2):020503. PubMed ID: 16674174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation.
    Lv Y; Tian J; Cong W; Wang G; Yang W; Qin C; Xu M
    Phys Med Biol; 2007 Aug; 52(15):4497-512. PubMed ID: 17634646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography.
    Feng J; Qin C; Jia K; Han D; Liu K; Zhu S; Yang X; Tian J
    Med Phys; 2011 Nov; 38(11):5933-44. PubMed ID: 22047358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research.
    Zhang B; Wang KK; Yu J; Eslami S; Iordachita I; Reyes J; Malek R; Tran PT; Patterson MS; Wong JW
    Int J Radiat Oncol Biol Phys; 2016 Apr; 94(5):1144-53. PubMed ID: 26876954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An optimal automatic selection algorithm of permissible source region applied in bioluminescence tomography].
    Zhang Q; Chen C; Liu G; Li T
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 Nov; 38(6):393-7. PubMed ID: 25980122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single pixel hyperspectral bioluminescence tomography based on compressive sensing.
    Bentley A; Rowe JE; Dehghani H
    Biomed Opt Express; 2019 Nov; 10(11):5549-5564. PubMed ID: 31799030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region.
    Naser MA; Patterson MS
    Biomed Opt Express; 2010 Dec; 2(1):169-84. PubMed ID: 21326647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Filtered maximum likelihood expectation maximization based global reconstruction for bioluminescence tomography.
    Yang D; Wang L; Chen D; Yan C; He X; Liang J; Chen X
    Med Biol Eng Comput; 2018 Nov; 56(11):2067-2081. PubMed ID: 29770920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrally resolved bioluminescence tomography using the reciprocity approach.
    Dehghani H; Davis SC; Pogue BW
    Med Phys; 2008 Nov; 35(11):4863-71. PubMed ID: 19070220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.
    Chaudhari AJ; Darvas F; Bading JR; Moats RA; Conti PS; Smith DJ; Cherry SR; Leahy RM
    Phys Med Biol; 2005 Dec; 50(23):5421-41. PubMed ID: 16306643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial weighed element based FEM incorporating a priori information on bioluminescence tomography.
    Shi J; Tian J; Xu M; Yang W
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):874-82. PubMed ID: 18979828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information.
    Lu Y; Zhang X; Douraghy A; Stout D; Tian J; Chan TF; Chatziioannou AF
    Opt Express; 2009 May; 17(10):8062-80. PubMed ID: 19434138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.