These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29541574)

  • 1. Investigating Compaction by Intergranular Pressure Solution Using the Discrete Element Method.
    van den Ende MPA; Marketos G; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2018 Jan; 123(1):107-124. PubMed ID: 29541574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain-Level Numerical Simulations for the Effective Elasticity of Weakly Cemented Sandstones.
    Xu X
    ACS Omega; 2023 Sep; 8(37):33610-33621. PubMed ID: 37744858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of High-Density Compaction of Pharmaceutical Tablets Using Multi-Contact Discrete Element Method.
    Giannis K; Schilde C; Finke JH; Kwade A
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Particle Shape on the Compaction of Realistic Non-Spherical Particles-A Multi-Contact DEM Study.
    Giannis K; Kwade A; Finke JH; Schilde C
    Pharmaceutics; 2023 Mar; 15(3):. PubMed ID: 36986770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction.
    Furukawa R; Kadota K; Noguchi T; Shimosaka A; Shirakawa Y
    AAPS PharmSciTech; 2017 Aug; 18(6):2368-2377. PubMed ID: 28127720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction phenomena and their impact on the shear behaviour of granular material.
    Suhr B; Six K
    Comput Part Mech; 2017; 4(1):23-34. PubMed ID: 28133590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Compaction of a High-Silica Sand in Quasi-Static Conditions.
    Szwajka K; Szewczyk M; Trzepieciński T
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional simulations of nanopowder compaction processes by granular dynamics method.
    Boltachev GSh; Lukyashin KE; Shitov VA; Volkov NB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012209. PubMed ID: 23944456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Cohesive Models in EDEM and LIGGGHTS for Simulating Powder Compaction.
    Ramírez-Aragón C; Ordieres-Meré J; Alba-Elías F; González-Marcos A
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30469421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of stress distribution in sheared granular material in two dimensions.
    Bardenhagen SG; Brackbill JU; Sulsky D
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt B):3882-90. PubMed ID: 11088908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes.
    So M; Inoue G; Park K; Nunoshita K; Ishikawa S; Tsuge Y
    MethodsX; 2022; 9():101857. PubMed ID: 36176333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Setting up virgin stress conditions in discrete element models.
    Rojek J; Karlis GF; Malinowski LJ; Beer G
    Comput Geotech; 2013 Mar; 48():228-248. PubMed ID: 27087731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A soft departure from jamming: the compaction of deformable granular matter under high pressures.
    Clemmer JT; Monti JM; Lechman JB
    Soft Matter; 2024 Feb; 20(8):1702-1718. PubMed ID: 38284215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic destruction of ultra-high molecular weight polyethylene (UHMWPE) under uniaxial tension.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):47-57. PubMed ID: 12652022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Aggregate Mesostructure on Permanent Deformation of Asphalt Mixture Using Three-Dimensional Discrete Element Modeling.
    Zhang D; Gu L; Zhu J
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31684016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and Numerical Studies on the Direct Shear Behavior of Sand-RCA (Recycled Concrete Aggregates) Mixtures with Different Contents of RCA.
    Liu Y; Huang S; Li L; Xiao H; Chen Z; Mao H
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pure climb creep mechanism drives flow in Earth's lower mantle.
    Boioli F; Carrez P; Cordier P; Devincre B; Gouriet K; Hirel P; Kraych A; Ritterbex S
    Sci Adv; 2017 Mar; 3(3):e1601958. PubMed ID: 28345037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliant contact versus rigid contact: A comparison in the context of granular dynamics.
    Pazouki A; Kwarta M; Williams K; Likos W; Serban R; Jayakumar P; Negrut D
    Phys Rev E; 2017 Oct; 96(4-1):042905. PubMed ID: 29347540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Modeling for Simulation of Compaction of Refractory Materials for Secondary Steelmaking.
    Ramírez-Aragón C; Ordieres-Meré J; Alba-Elías F; González-Marcos A
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.