BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29541737)

  • 1. Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips.
    Fan Y; Dong D; Li Q; Si H; Pei H; Li L; Tang B
    Lab Chip; 2018 Apr; 18(8):1151-1173. PubMed ID: 29541737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Trends of Microfluidic Single-Cell Technologies.
    Shinde P; Mohan L; Kumar A; Dey K; Maddi A; Patananan AN; Tseng FG; Chang HY; Nagai M; Santra TS
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence quantification of intracellular materials at the single-cell level by an integrated dual-well array microfluidic device.
    Wang C; Ren L; Liu W; Wei Q; Tan M; Yu Y
    Analyst; 2019 Apr; 144(8):2811-2819. PubMed ID: 30882810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chip electrophoresis for biochemical analysis.
    Ou X; Chen P; Huang X; Li S; Liu BF
    J Sep Sci; 2020 Jan; 43(1):258-270. PubMed ID: 31654552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.
    He S; Zhang Y; Wang P; Xu X; Zhu K; Pan W; Liu W; Cai K; Sun J; Zhang W; Jiang X
    Lab Chip; 2015 Jan; 15(1):105-12. PubMed ID: 25342223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microfluidic capture of single breast cancer cells for multi-drug resistance assays.
    Parekh K; Sharifi H; Khamenehfar A; Beischlag TV; Payer RTM; Li PCH
    Methods Enzymol; 2019; 628():113-127. PubMed ID: 31668225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards microwave imaging of cells.
    Kelleci M; Aydogmus H; Aslanbas L; Erbil SO; Hanay MS
    Lab Chip; 2018 Jan; 18(3):463-472. PubMed ID: 29244051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    García-Alonso J; Greenway GM; Hardege JD; Haswell SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1508-11. PubMed ID: 18805688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel.
    Lin L; Mawatari K; Morikawa K; Kitamori T
    Anal Sci; 2016; 32(1):75-8. PubMed ID: 26753709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell activity screening in microfluidic droplets.
    Neun S; Kaminski TS; Hollfelder F
    Methods Enzymol; 2019; 628():95-112. PubMed ID: 31668237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive fluorescence-based methods for nucleic acid detection: towards amplification-free genetic analysis.
    Ranasinghe RT; Brown T
    Chem Commun (Camb); 2011 Apr; 47(13):3717-35. PubMed ID: 21283891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturization of a micro-optics array for highly sensitive and parallel detection on an injection moulded lab-on-a-chip.
    Hung TQ; Sun Y; Poulsen CE; Linh-Quyen T; Chin WH; Bang DD; Wolff A
    Lab Chip; 2015 Jun; 15(11):2445-51. PubMed ID: 25912610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Self-Digitization Dielectrophoretic (SD-DEP) Chip for High-Efficiency Single-Cell Capture, On-Demand Compartmentalization, and Downstream Nucleic Acid Analysis.
    Qin Y; Wu L; Schneider T; Yen GS; Wang J; Xu S; Li M; Paguirigan AL; Smith JL; Radich JP; Anand RK; Chiu DT
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11378-11383. PubMed ID: 30003660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the gap: microfluidic devices for short and long distance cell-cell communication.
    Vu TQ; de Castro RM; Qin L
    Lab Chip; 2017 Mar; 17(6):1009-1023. PubMed ID: 28205652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
    Kim J; Hong JW; Kim DP; Shin JH; Park I
    Lab Chip; 2012 Aug; 12(16):2914-21. PubMed ID: 22722645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.