These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 29541998)
1. The Rainbow Spectrum of RNA Secondary Structures. Li TJX; Reidys CM Bull Math Biol; 2018 Jun; 80(6):1514-1538. PubMed ID: 29541998 [TBL] [Abstract][Full Text] [Related]
2. The block spectrum of RNA pseudoknot structures. Li TJX; Burris CS; Reidys CM J Math Biol; 2019 Aug; 79(3):791-822. PubMed ID: 31172257 [TBL] [Abstract][Full Text] [Related]
3. The topological filtration of γ-structures. Li TJ; Reidys CM Math Biosci; 2013 Jan; 241(1):24-33. PubMed ID: 23022027 [TBL] [Abstract][Full Text] [Related]
4. RNA Secondary Structures Having a Compatible Sequence of Certain Nucleotide Ratios. Barrett CL; Li TJ; Reidys CM J Comput Biol; 2016 Nov; 23(11):857-873. PubMed ID: 27322662 [TBL] [Abstract][Full Text] [Related]
5. Stacks in canonical RNA pseudoknot structures. Han HS; Reidys CM Math Biosci; 2009 May; 219(1):7-14. PubMed ID: 19402214 [TBL] [Abstract][Full Text] [Related]
6. RNA folding kinetics using Monte Carlo and Gillespie algorithms. Clote P; Bayegan AH J Math Biol; 2018 Apr; 76(5):1195-1227. PubMed ID: 28780735 [TBL] [Abstract][Full Text] [Related]
7. Asymptotic number of hairpins of saturated RNA secondary structures. Clote P; Kranakis E; Krizanc D Bull Math Biol; 2013 Dec; 75(12):2410-30. PubMed ID: 24142625 [TBL] [Abstract][Full Text] [Related]
8. Combinatorial analysis of interacting RNA molecules. Li TJ; Reidys CM Math Biosci; 2011 Sep; 233(1):47-58. PubMed ID: 21689666 [TBL] [Abstract][Full Text] [Related]
9. Local connectivity of neutral networks. Reidys CM Bull Math Biol; 2009 Feb; 71(2):265-90. PubMed ID: 19115073 [TBL] [Abstract][Full Text] [Related]
10. Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding. Poznanović S; Heitsch CE J Math Biol; 2014 Dec; 69(6-7):1743-72. PubMed ID: 24384698 [TBL] [Abstract][Full Text] [Related]
11. RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup. Jin EY; Nebel ME J Math Biol; 2016 Feb; 72(3):527-71. PubMed ID: 26001743 [TBL] [Abstract][Full Text] [Related]
12. Irreducibility in RNA structures. Jin EY; Reidys CM Bull Math Biol; 2010 Feb; 72(2):375-99. PubMed ID: 19890676 [TBL] [Abstract][Full Text] [Related]
13. The 5'-3' distance of RNA secondary structures. Han HS; Reidys CM J Comput Biol; 2012 Jul; 19(7):867-78. PubMed ID: 22731624 [TBL] [Abstract][Full Text] [Related]
14. Moments of the Boltzmann distribution for RNA secondary structures. Miklós I; Meyer IM; Nagy B Bull Math Biol; 2005 Sep; 67(5):1031-47. PubMed ID: 15998494 [TBL] [Abstract][Full Text] [Related]
15. A phase transition in energy-filtered RNA secondary structures. Han HS; Reidys CM J Comput Biol; 2012 Oct; 19(10):1105-19. PubMed ID: 23057821 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the free energy in a stochastic RNA secondary structure model. Nebel ME; Scheid A IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1468-82. PubMed ID: 21116040 [TBL] [Abstract][Full Text] [Related]
18. Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model. Waldispühl J; Clote P J Comput Biol; 2007 Mar; 14(2):190-215. PubMed ID: 17456015 [TBL] [Abstract][Full Text] [Related]
19. Central and local limit theorems for RNA structures. Jin EY; Reidys CM J Theor Biol; 2008 Feb; 250(3):547-59. PubMed ID: 18045620 [TBL] [Abstract][Full Text] [Related]
20. Zigzag stacks and m-regular linear stacks. Chen WY; Guo QH; Sun LH; Wang J J Comput Biol; 2014 Dec; 21(12):915-35. PubMed ID: 25455155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]