BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29542264)

  • 21. In Vitro Activity of the Novel Antimicrobial Peptide Dendrimer G3KL against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa.
    Pires J; Siriwardena TN; Stach M; Tinguely R; Kasraian S; Luzzaro F; Leib SL; Darbre T; Reymond JL; Endimiani A
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7915-8. PubMed ID: 26459893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
    Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC
    Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short Synthetic β-Sheet Antimicrobial Peptides for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Burn Wound Infections.
    Zhong G; Cheng J; Liang ZC; Xu L; Lou W; Bao C; Ong ZY; Dong H; Yang YY; Fan W
    Adv Healthc Mater; 2017 Apr; 6(7):. PubMed ID: 28135045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational design of the helical hairpin structure of membrane-active antibacterial peptides based on RSV glycoprotein epitope scaffold.
    Fu J; Yang H; Wang J
    Comput Biol Chem; 2018 Apr; 73():200-205. PubMed ID: 29499459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel cationic peptide TP359 down-regulates the expression of outer membrane biogenesis genes in Pseudomonas aeruginosa: a potential TP359 anti-microbial mechanism.
    Dosunmu EF; Chaudhari AA; Bawage S; Bakeer MK; Owen DR; Singh SR; Dennis VA; Pillai SR
    BMC Microbiol; 2016 Aug; 16(1):192. PubMed ID: 27549081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. K1K8: an Hp1404-derived antibacterial peptide.
    Li Z; Liu G; Meng L; Yu W; Xu X; Li W; Wu Y; Cao Z
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5069-77. PubMed ID: 26952110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections.
    Riool M; de Breij A; Kwakman PHS; Schonkeren-Ravensbergen E; de Boer L; Cordfunke RA; Malanovic N; Drijfhout JW; Nibbering PH; Zaat SAJ
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183282. PubMed ID: 32376222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving short antimicrobial peptides despite elusive rules for activity.
    Mikut R; Ruden S; Reischl M; Breitling F; Volkmer R; Hilpert K
    Biochim Biophys Acta; 2016 May; 1858(5):1024-33. PubMed ID: 26687790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, cyclization, and optimization of MMP13-TIMP1 interaction-derived self-inhibitory peptides against chondrocyte senescence in osteoarthritis.
    Zhang W; Zhang C; Luo C; Zhan Y; Zhong B
    Int J Biol Macromol; 2019 Jan; 121():921-929. PubMed ID: 30352228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein aggregation as an antibiotic design strategy.
    Bednarska NG; van Eldere J; Gallardo R; Ganesan A; Ramakers M; Vogel I; Baatsen P; Staes A; Goethals M; Hammarström P; Nilsson KP; Gevaert K; Schymkowitz J; Rousseau F
    Mol Microbiol; 2016 Mar; 99(5):849-65. PubMed ID: 26559925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Closed and Semiclosed Interhelical Structures in Membrane vs Closed and Open Structures in Detergent for the Influenza Virus Hemagglutinin Fusion Peptide and Correlation of Hydrophobic Surface Area with Fusion Catalysis.
    Ghosh U; Xie L; Jia L; Liang S; Weliky DP
    J Am Chem Soc; 2015 Jun; 137(24):7548-51. PubMed ID: 26039158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria.
    Ageitos JM; Sánchez-Pérez A; Calo-Mata P; Villa TG
    Biochem Pharmacol; 2017 Jun; 133():117-138. PubMed ID: 27663838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria.
    Xie J; Gou Y; Zhao Q; Li S; Zhang W; Song J; Mou L; Li J; Wang K; Zhang B; Yang W; Wang R
    J Pept Sci; 2015 Jul; 21(7):599-607. PubMed ID: 25891396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.
    Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S
    FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo characterization of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus.
    Zhang Y; Teng D; Wang X; Mao R; Cao X; Hu X; Zong L; Wang J
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6255-66. PubMed ID: 25620367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity.
    Deslouches B; Phadke SM; Lazarevic V; Cascio M; Islam K; Montelaro RC; Mietzner TA
    Antimicrob Agents Chemother; 2005 Jan; 49(1):316-22. PubMed ID: 15616311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A helix-PXXP-helix peptide with antibacterial activity without cytotoxicity against MDRPA-infected mice.
    Lee JK; Park SC; Hahm KS; Park Y
    Biomaterials; 2014 Jan; 35(3):1025-39. PubMed ID: 24176194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin.
    Zhu S; Aumelas A; Gao B
    J Med Chem; 2011 Feb; 54(4):1091-5. PubMed ID: 21222457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study.
    Huang Q; Chen CL; Herrmann A
    Biophys J; 2004 Jul; 87(1):14-22. PubMed ID: 15240440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.