These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29542763)

  • 1. Introduction of carbon-boron atomic groups as an efficient strategy to boost formic acid production toward CO
    Cao Y; Geng Z; Chen W; Cai F; Wang G; Wang Z; Zeng J
    Chem Commun (Camb); 2018 Mar; 54(27):3367-3370. PubMed ID: 29542763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable and Highly Efficient Electrochemical Production of Formic Acid from Carbon Dioxide Using Diamond Electrodes.
    Natsui K; Iwakawa H; Ikemiya N; Nakata K; Einaga Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(10):2639-2643. PubMed ID: 29345846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface Engineering of Earth-Abundant Transition Metals Using Boron Nitride for Selective Electroreduction of CO
    Hu G; Wu Z; Dai S; Jiang DE
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6694-6700. PubMed ID: 29385799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.
    Yoo JS; Christensen R; Vegge T; Nørskov JK; Studt F
    ChemSusChem; 2016 Feb; 9(4):358-63. PubMed ID: 26663854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bi-Doped SnO Nanosheets Supported on Cu Foam for Electrochemical Reduction of CO
    An X; Li S; Yoshida A; Yu T; Wang Z; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42114-42122. PubMed ID: 31623434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Coordinated Edge Sites on Ultrathin Palladium Nanosheets Boost Carbon Dioxide Electroreduction Performance.
    Zhu W; Zhang L; Yang P; Hu C; Luo Z; Chang X; Zhao ZJ; Gong J
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11544-11548. PubMed ID: 29947046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inchoate horizon of electrolyzer designs, membranes and catalysts towards highly efficient electrochemical reduction of CO
    Senthilkumar P; Mohapatra M; Basu S
    RSC Adv; 2022 Jan; 12(3):1287-1309. PubMed ID: 35425201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient and Selective CO
    Tian J; Wang M; Shen M; Ma X; Hua Z; Zhang L; Shi J
    ChemSusChem; 2020 Dec; 13(23):6442-6448. PubMed ID: 33107175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Production of HCOOH from CO
    Duan YX; Zhou YT; Yu Z; Liu DX; Wen Z; Yan JM; Jiang Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8798-8802. PubMed ID: 33512043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn- and Ti-Doped SnO
    Bejtka K; Monti NBD; Sacco A; Castellino M; Porro S; Farkhondehfal MA; Zeng J; Pirri CF; Chiodoni A
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34062766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO
    Wang T; Sang X; Zheng W; Yang B; Yao S; Lei C; Li Z; He Q; Lu J; Lei L; Dai L; Hou Y
    Adv Mater; 2020 Jul; 32(29):e2002430. PubMed ID: 32538500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO
    Sun X; Lu L; Zhu Q; Wu C; Yang D; Chen C; Han B
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2427-2431. PubMed ID: 29345804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Formate Production in Electrocatalytic CO
    Jiang B; Zhang XG; Jiang K; Wu DY; Cai WB
    J Am Chem Soc; 2018 Feb; 140(8):2880-2889. PubMed ID: 29409320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrrolic-nitrogen doped graphene: a metal-free electrocatalyst with high efficiency and selectivity for the reduction of carbon dioxide to formic acid: a computational study.
    Liu Y; Zhao J; Cai Q
    Phys Chem Chem Phys; 2016 Feb; 18(7):5491-8. PubMed ID: 26863176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Ren M; Zheng H; Lei J; Zhang J; Wang X; Yakobson BI; Yao Y; Tour JM
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41223-41229. PubMed ID: 32830950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-Free Nitrogen-Doped Mesoporous Carbon for Electroreduction of CO
    Song Y; Chen W; Zhao C; Li S; Wei W; Sun Y
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10840-10844. PubMed ID: 28691392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond.
    Liu Y; Zhang Y; Cheng K; Quan X; Fan X; Su Y; Chen S; Zhao H; Zhang Y; Yu H; Hoffmann MR
    Angew Chem Int Ed Engl; 2017 Dec; 56(49):15607-15611. PubMed ID: 28914470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter.
    Chen S; Zhu C; Gu H; Wang L; Qi J; Zhong L; Zhang Z; Yang C; Shi G; Zhao S; Li S; Liu K; Zhang L
    Nano Lett; 2021 May; 21(10):4469-4476. PubMed ID: 33978428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced SnO
    Kumar B; Atla V; Brian JP; Kumari S; Nguyen TQ; Sunkara M; Spurgeon JM
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3645-3649. PubMed ID: 28229519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.