These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29542944)

  • 1. Light-Mediated Collective Atomic Motion in an Optical Lattice Coupled to a Membrane.
    Vochezer A; Kampschulte T; Hammerer K; Treutlein P
    Phys Rev Lett; 2018 Feb; 120(7):073602. PubMed ID: 29542944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of an optomechanical interface between ultracold atoms and a membrane.
    Camerer S; Korppi M; Jöckel A; Hunger D; Hänsch TW; Treutlein P
    Phys Rev Lett; 2011 Nov; 107(22):223001. PubMed ID: 22182025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collective excitations and instability of an optical lattice due to unbalanced pumping.
    Asbóth JK; Ritsch H; Domokos P
    Phys Rev Lett; 2007 May; 98(20):203008. PubMed ID: 17677694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical detection of the quantization of collective atomic motion.
    Brahms N; Botter T; Schreppler S; Brooks DW; Stamper-Kurn DM
    Phys Rev Lett; 2012 Mar; 108(13):133601. PubMed ID: 22540699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium Quantum Phase Transition in a Hybrid Atom-Optomechanical System.
    Mann N; Bakhtiari MR; Pelster A; Thorwart M
    Phys Rev Lett; 2018 Feb; 120(6):063605. PubMed ID: 29481249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective atomic motion in an optical lattice formed inside a high finesse cavity.
    Nagorny B; Elsässer T; Hemmerich A
    Phys Rev Lett; 2003 Oct; 91(15):153003. PubMed ID: 14611465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system.
    Jöckel A; Faber A; Kampschulte T; Korppi M; Rakher MT; Treutlein P
    Nat Nanotechnol; 2015 Jan; 10(1):55-9. PubMed ID: 25420032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit.
    Peterson RW; Purdy TP; Kampel NS; Andrews RW; Yu PL; Lehnert KW; Regal CA
    Phys Rev Lett; 2016 Feb; 116(6):063601. PubMed ID: 26918990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative-Mass Instability of the Spin and Motion of an Atomic Gas Driven by Optical Cavity Backaction.
    Kohler J; Gerber JA; Dowd E; Stamper-Kurn DM
    Phys Rev Lett; 2018 Jan; 120(1):013601. PubMed ID: 29350956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraslow light realization using an interacting Bose-Einstein condensate trapped in a shallow optical lattice.
    Mikaeili H; Dalafi A; Ghanaatshoar M; Askari B
    Sci Rep; 2022 Mar; 12(1):4428. PubMed ID: 35292667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice.
    Béguin JB; Bookjans EM; Christensen SL; Sørensen HL; Müller JH; Polzik ES; Appel J
    Phys Rev Lett; 2014 Dec; 113(26):263603. PubMed ID: 25615331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization of Bloch oscillations by a ring cavity.
    Samoylova M; Piovella N; Robb GR; Bachelard R; Courteille PW
    Opt Express; 2015 Jun; 23(11):14823-35. PubMed ID: 26072841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cavity-modified collective Rayleigh scattering of two atoms.
    Reimann R; Alt W; Kampschulte T; Macha T; Ratschbacher L; Thau N; Yoon S; Meschede D
    Phys Rev Lett; 2015 Jan; 114(2):023601. PubMed ID: 25635545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble.
    Zeng W; Nie W; Li L; Chen A
    Sci Rep; 2017 Dec; 7(1):17258. PubMed ID: 29222484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical bistability in coupled optomechanical cavities in the presence of Kerr effect.
    Asghari Nejad A; Askari HR; Baghshahi HR
    Appl Opt; 2017 Apr; 56(10):2816-2820. PubMed ID: 28375247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold atom dynamics in a quantum optical lattice potential.
    Maschler C; Ritsch H
    Phys Rev Lett; 2005 Dec; 95(26):260401. PubMed ID: 16486317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A subradiant optical mirror formed by a single structured atomic layer.
    Rui J; Wei D; Rubio-Abadal A; Hollerith S; Zeiher J; Stamper-Kurn DM; Gross C; Bloch I
    Nature; 2020 Jul; 583(7816):369-374. PubMed ID: 32669699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.
    Bakhtiari MR; Hemmerich A; Ritsch H; Thorwart M
    Phys Rev Lett; 2015 Mar; 114(12):123601. PubMed ID: 25860742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect light-matter interaction in dissipative coupled cavities.
    Sampuli EM; Wang Y; Song J; Xia Y
    Opt Express; 2019 Aug; 27(16):22674-22684. PubMed ID: 31510553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.