These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29542949)

  • 1. Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma.
    Bin JH; Yeung M; Gong Z; Wang HY; Kreuzer C; Zhou ML; Streeter MJV; Foster PS; Cousens S; Dromey B; Meyer-Ter-Vehn J; Zepf M; Schreiber J
    Phys Rev Lett; 2018 Feb; 120(7):074801. PubMed ID: 29542949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of Superponderomotive Electrons in Multipicosecond Interactions of Kilojoule Laser Beams with Solid-Density Plasmas.
    Sorokovikova A; Arefiev AV; McGuffey C; Qiao B; Robinson AP; Wei MS; McLean HS; Beg FN
    Phys Rev Lett; 2016 Apr; 116(15):155001. PubMed ID: 27127972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme.
    Higginson A; Gray RJ; King M; Dance RJ; Williamson SDR; Butler NMH; Wilson R; Capdessus R; Armstrong C; Green JS; Hawkes SJ; Martin P; Wei WQ; Mirfayzi SR; Yuan XH; Kar S; Borghesi M; Clarke RJ; Neely D; McKenna P
    Nat Commun; 2018 Feb; 9(1):724. PubMed ID: 29463872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of relativistic electrons at subrelativistic laser intensities.
    Williams GJ; Link A; Sherlock M; Alessi DA; Bowers M; Conder A; Di Nicola P; Fiksel G; Fiuza F; Hamamoto M; Hermann MR; Herriot S; Homoelle D; Hsing W; d'Humières E; Kalantar D; Kemp A; Kerr S; Kim J; LaFortune KN; Lawson J; Lowe-Webb R; Ma T; Mariscal DA; Martinez D; Manuel MJ; Nakai M; Pelz L; Prantil M; Remington B; Sigurdsson R; Widmayer C; Williams W; Willingale L; Zacharias R; Youngblood K; Chen H
    Phys Rev E; 2020 Mar; 101(3-1):031201. PubMed ID: 32289929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser ion acceleration using a solid target coupled with a low-density layer.
    Sgattoni A; Londrillo P; Macchi A; Passoni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036405. PubMed ID: 22587194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuum laser acceleration of super-ponderomotive electrons using relativistic transparency injection.
    Singh PK; Li FY; Huang CK; Moreau A; Hollinger R; Junghans A; Favalli A; Calvi C; Wang S; Wang Y; Song H; Rocca JJ; Reinovsky RE; Palaniyappan S
    Nat Commun; 2022 Jan; 13(1):54. PubMed ID: 35013209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced laser-driven ion acceleration in the relativistic transparency regime.
    Henig A; Kiefer D; Markey K; Gautier DC; Flippo KA; Letzring S; Johnson RP; Shimada T; Yin L; Albright BJ; Bowers KJ; Fernández JC; Rykovanov SG; Wu HC; Zepf M; Jung D; Liechtenstein VKh; Schreiber J; Habs D; Hegelich BM
    Phys Rev Lett; 2009 Jul; 103(4):045002. PubMed ID: 19659362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil.
    Ma WJ; Kim IJ; Yu JQ; Choi IW; Singh PK; Lee HW; Sung JH; Lee SK; Lin C; Liao Q; Zhu JG; Lu HY; Liu B; Wang HY; Xu RF; He XT; Chen JE; Zepf M; Schreiber J; Yan XQ; Nam CH
    Phys Rev Lett; 2019 Jan; 122(1):014803. PubMed ID: 31012707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets.
    Zou DB; Pukhov A; Yi LQ; Zhuo HB; Yu TP; Yin Y; Shao FQ
    Sci Rep; 2017 Feb; 7():42666. PubMed ID: 28218247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target.
    Sharma A
    Sci Rep; 2018 Feb; 8(1):2191. PubMed ID: 29391470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplification of Relativistic Electron Bunches by Acceleration in Laser Fields.
    Braenzel J; Andreev AA; Abicht F; Ehrentraut L; Platonov K; Schnürer M
    Phys Rev Lett; 2017 Jan; 118(1):014801. PubMed ID: 28106423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-driven proton acceleration enhancement by nanostructured foils.
    Margarone D; Klimo O; Kim IJ; Prokůpek J; Limpouch J; Jeong TM; Mocek T; Pšikal J; Kim HT; Proška J; Nam KH; Stolcová L; Choi IW; Lee SK; Sung JH; Yu TJ; Korn G
    Phys Rev Lett; 2012 Dec; 109(23):234801. PubMed ID: 23368211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron acceleration by few-cycle laser pulses with single-wavelength spot size.
    Dudnikova GI; Bychenkov VY; Maksimchuk A; Mourou G; Nees J; Bochkarev SG; Vshivkov VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026416. PubMed ID: 12636831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target.
    Kim YK; Cho MH; Song HS; Kang T; Park HJ; Jung MY; Hur MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043102. PubMed ID: 26565351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction.
    Nodera Y; Kawata S; Onuma N; Limpouch J; Klimo O; Kikuchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046401. PubMed ID: 18999537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of laser-driven ion sources and their applications.
    Daido H; Nishiuchi M; Pirozhkov AS
    Rep Prog Phys; 2012 May; 75(5):056401. PubMed ID: 22790586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant electromagnetic vortex and MeV monoenergetic electrons generated by short laser pulses in underdense plasma near quarter critical density region.
    Zhidkov A; Nemoto K; Nayuki T; Oishi Y; Fuji T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016401. PubMed ID: 17677573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton acceleration in the electrostatic sheaths of hot electrons governed by strongly relativistic laser-absorption processes.
    Ter-Avetisyan S; Schnürer M; Sokollik T; Nickles PV; Sandner W; Reiss HR; Stein J; Habs D; Nakamura T; Mima K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016403. PubMed ID: 18351940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.
    Gonzalez-Izquierdo B; King M; Gray RJ; Wilson R; Dance RJ; Powell H; Maclellan DA; McCreadie J; Butler NMH; Hawkes S; Green JS; Murphy CD; Stockhausen LC; Carroll DC; Booth N; Scott GG; Borghesi M; Neely D; McKenna P
    Nat Commun; 2016 Sep; 7():12891. PubMed ID: 27624920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relativistic electron acceleration by mJ-class kHz lasers normally incident on liquid targets.
    Feister S; Austin DR; Morrison JT; Frische KD; Orban C; Ngirmang G; Handler A; Smith JRH; Schillaci M; LaVerne JA; Chowdhury EA; Freeman RR; Roquemore WM
    Opt Express; 2017 Aug; 25(16):18736-18750. PubMed ID: 29041068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.