These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29542949)

  • 21. Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration.
    Flacco A; Sylla F; Veltcheva M; Carrié M; Nuter R; Lefebvre E; Batani D; Malka V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036405. PubMed ID: 20365880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing laser-driven proton acceleration from overdense targets.
    Stockem Novo A; Kaluza MC; Fonseca RA; Silva LO
    Sci Rep; 2016 Jul; 6():29402. PubMed ID: 27435449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolated proton bunch acceleration by a petawatt laser pulse.
    Hilz P; Ostermayr TM; Huebl A; Bagnoud V; Borm B; Bussmann M; Gallei M; Gebhard J; Haffa D; Hartmann J; Kluge T; Lindner FH; Neumayr P; Schaefer CG; Schramm U; Thirolf PG; Rösch TF; Wagner F; Zielbauer B; Schreiber J
    Nat Commun; 2018 Jan; 9(1):423. PubMed ID: 29379024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas.
    Sentoku Y; Liseikina TV; Esirkepov TZ; Califano F; Naumova NM; Ueshima Y; Vshivkov VA; Kato Y; Mima K; Nishihara K; Pegoraro F; Bulanov SV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7271-81. PubMed ID: 11102086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser.
    Zhuo HB; Chen ZL; Yu W; Sheng ZM; Yu MY; Jin Z; Kodama R
    Phys Rev Lett; 2010 Aug; 105(6):065003. PubMed ID: 20867985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-dependent energetic proton acceleration and scaling laws in ultraintense laser-pulse interactions with thin foils.
    Huang Y; Bi Y; Shi Y; Wang N; Tang X; Gao Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036406. PubMed ID: 19392063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forward ion acceleration in thin films driven by a high-intensity laser.
    Maksimchuk A; Gu S; Flippo K; Umstadter D; Bychenkov VY
    Phys Rev Lett; 2000 May; 84(18):4108-11. PubMed ID: 10990622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ponderomotive acceleration of hot electrons in tenuous plasmas.
    Geyko VI; Fraiman GM; Dodin IY; Fisch NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036404. PubMed ID: 19905227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistively enhanced proton acceleration via high-intensity laser interactions with cold foil targets.
    Gibbon P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026411. PubMed ID: 16196722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced laser-driven proton acceleration via improved fast electron heating in a controlled pre-plasma.
    Gizzi LA; Boella E; Labate L; Baffigi F; Bilbao PJ; Brandi F; Cristoforetti G; Fazzi A; Fulgentini L; Giove D; Koester P; Palla D; Tomassini P
    Sci Rep; 2021 Jul; 11(1):13728. PubMed ID: 34215775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density.
    Rehwald M; Assenbaum S; Bernert C; Brack FE; Bussmann M; Cowan TE; Curry CB; Fiuza F; Garten M; Gaus L; Gauthier M; Göde S; Göthel I; Glenzer SH; Huang L; Huebl A; Kim JB; Kluge T; Kraft S; Kroll F; Metzkes-Ng J; Miethlinger T; Loeser M; Obst-Huebl L; Reimold M; Schlenvoigt HP; Schoenwaelder C; Schramm U; Siebold M; Treffert F; Yang L; Ziegler T; Zeil K
    Nat Commun; 2023 Jul; 14(1):4009. PubMed ID: 37419912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relativistic electron generation in interactions of a 30 TW laser pulse with a thin foil target.
    Malka G; Aleonard MM; Chemin JF; Claverie G; Harston MR; Scheurer JN; Tikhonchuk V; Fritzler S; Malka V; Balcou P; Grillon G; Moustaizis S; Notebaert L; Lefebvre E; Cochet N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066402. PubMed ID: 12513407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intense short-pulse lasers irradiating wire and hollow plasma fibers.
    Zhou CT; He XT; Chew LY
    Opt Lett; 2011 Mar; 36(6):924-6. PubMed ID: 21403730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses.
    Mackinnon AJ; Sentoku Y; Patel PK; Price DW; Hatchett S; Key MH; Andersen C; Snavely R; Freeman RR
    Phys Rev Lett; 2002 May; 88(21):215006. PubMed ID: 12059483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-intensity laser-driven proton acceleration: influence of pulse contrast.
    McKenna P; Lindau F; Lundh O; Neely D; Persson A; Wahlström CG
    Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):711-23. PubMed ID: 16483959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of laser-driven proton acceleration from water microdroplets.
    Becker GA; Schwab MB; Lötzsch R; Tietze S; Klöpfel D; Rehwald M; Schlenvoigt HP; Sävert A; Schramm U; Zepf M; Kaluza MC
    Sci Rep; 2019 Nov; 9(1):17169. PubMed ID: 31748554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron acceleration by a short relativistic laser pulse at the front of solid targets.
    Yu W; Bychenkov V; Sentoku Y; Yu MY; Sheng ZM; Mima K
    Phys Rev Lett; 2000 Jul; 85(3):570-3. PubMed ID: 10991342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser.
    Pukhov A
    Phys Rev Lett; 2001 Apr; 86(16):3562-5. PubMed ID: 11328023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laser acceleration of quasi-monoenergetic MeV ion beams.
    Hegelich BM; Albright BJ; Cobble J; Flippo K; Letzring S; Paffett M; Ruhl H; Schreiber J; Schulze RK; Fernández JC
    Nature; 2006 Jan; 439(7075):441-4. PubMed ID: 16437109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generating "superponderomotive" electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field.
    Robinson AP; Arefiev AV; Neely D
    Phys Rev Lett; 2013 Aug; 111(6):065002. PubMed ID: 23971580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.