These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves. Collins DJ; Devendran C; Ma Z; Ng JW; Neild A; Ai Y Sci Adv; 2016 Jul; 2(7):e1600089. PubMed ID: 27453940 [TBL] [Abstract][Full Text] [Related]
8. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave. Ma Z; Collins DJ; Ai Y Anal Chem; 2016 May; 88(10):5316-23. PubMed ID: 27086552 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Xu M; Lee PVS; Collins DJ Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222 [TBL] [Abstract][Full Text] [Related]
10. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
11. A rapid and meshless analytical model of acoustofluidic pressure fields for waveguide design. O'Rorke R; Collins D; Ai Y Biomicrofluidics; 2018 Mar; 12(2):024104. PubMed ID: 29576835 [TBL] [Abstract][Full Text] [Related]
12. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
13. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities. Tayebi M; O'Rorke R; Wong HC; Low HY; Han J; Collins DJ; Ai Y Small; 2020 Apr; 16(17):e2000462. PubMed ID: 32196142 [TBL] [Abstract][Full Text] [Related]
14. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields. Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955 [TBL] [Abstract][Full Text] [Related]
15. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Collins DJ; Ma Z; Han J; Ai Y Lab Chip; 2016 Dec; 17(1):91-103. PubMed ID: 27883136 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Yazdi S; Lin SC; Ding X; Chiang IK; Sharp K; Huang TJ Lab Chip; 2011 Jul; 11(14):2319-24. PubMed ID: 21709881 [TBL] [Abstract][Full Text] [Related]
17. Capillary-based, multifunctional manipulation of particles and fluids Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708 [TBL] [Abstract][Full Text] [Related]
18. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications. Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383 [TBL] [Abstract][Full Text] [Related]
19. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics. Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901 [TBL] [Abstract][Full Text] [Related]
20. Vertical Hydrodynamic Focusing and Continuous Acoustofluidic Separation of Particles via Upward Migration. Ahmed H; Destgeer G; Park J; Jung JH; Sung HJ Adv Sci (Weinh); 2018 Feb; 5(2):1700285. PubMed ID: 29619294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]