These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29542965)
1. Quantum Quenches and Relaxation Dynamics in the Thermodynamic Limit. Mallayya K; Rigol M Phys Rev Lett; 2018 Feb; 120(7):070603. PubMed ID: 29542965 [TBL] [Abstract][Full Text] [Related]
2. Numerical linked cluster expansions for quantum quenches in one-dimensional lattices. Mallayya K; Rigol M Phys Rev E; 2017 Mar; 95(3-1):033302. PubMed ID: 28415243 [TBL] [Abstract][Full Text] [Related]
3. Fundamental Asymmetry in Quenches Between Integrable and Nonintegrable Systems. Rigol M Phys Rev Lett; 2016 Mar; 116(10):100601. PubMed ID: 27015465 [TBL] [Abstract][Full Text] [Related]
4. Quantum quenches in the thermodynamic limit. Rigol M Phys Rev Lett; 2014 May; 112(17):170601. PubMed ID: 24836226 [TBL] [Abstract][Full Text] [Related]
5. Breakdown of thermalization in finite one-dimensional systems. Rigol M Phys Rev Lett; 2009 Sep; 103(10):100403. PubMed ID: 19792288 [TBL] [Abstract][Full Text] [Related]
6. Ergodic properties of a generic nonintegrable quantum many-body system in the thermodynamic limit. Prosen T Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt A):3949-68. PubMed ID: 11970231 [TBL] [Abstract][Full Text] [Related]
9. Numerical linked-cluster expansions for two-dimensional spin models with continuous disorder distributions. Abdelshafy M; Rigol M Phys Rev E; 2024 May; 109(5-1):054127. PubMed ID: 38907482 [TBL] [Abstract][Full Text] [Related]
10. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Rigol M; Dunjko V; Yurovsky V; Olshanii M Phys Rev Lett; 2007 Feb; 98(5):050405. PubMed ID: 17358832 [TBL] [Abstract][Full Text] [Related]
11. Localization and the effects of symmetries in the thermalization properties of one-dimensional quantum systems. Santos LF; Rigol M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031130. PubMed ID: 21230048 [TBL] [Abstract][Full Text] [Related]
12. Origin of the exponential decay of the Loschmidt echo in integrable systems. Dubertrand R; Goussev A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022915. PubMed ID: 25353553 [TBL] [Abstract][Full Text] [Related]
13. Quantum quenches and work distributions in ultralow-density systems. Shchadilova YE; Ribeiro P; Haque M Phys Rev Lett; 2014 Feb; 112(7):070601. PubMed ID: 24579581 [TBL] [Abstract][Full Text] [Related]
15. Generalized thermalization in an integrable lattice system. Cassidy AC; Clark CW; Rigol M Phys Rev Lett; 2011 Apr; 106(14):140405. PubMed ID: 21561173 [TBL] [Abstract][Full Text] [Related]
16. Coexistence of energy diffusion and local thermalization in nonequilibrium XXZ spin chains with integrability breaking. Mendoza-Arenas JJ; Clark SR; Jaksch D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042129. PubMed ID: 25974460 [TBL] [Abstract][Full Text] [Related]
17. Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables. Wright TM; Rigol M; Davis MJ; Kheruntsyan KV Phys Rev Lett; 2014 Aug; 113(5):050601. PubMed ID: 25126906 [TBL] [Abstract][Full Text] [Related]
18. Relevance of the eigenstate thermalization hypothesis for thermal relaxation. Khodja A; Steinigeweg R; Gemmer J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012120. PubMed ID: 25679583 [TBL] [Abstract][Full Text] [Related]
19. Entanglement at a two-dimensional quantum critical point: a numerical linked-cluster expansion study. Kallin AB; Hyatt K; Singh RR; Melko RG Phys Rev Lett; 2013 Mar; 110(13):135702. PubMed ID: 23581341 [TBL] [Abstract][Full Text] [Related]