These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29543354)

  • 1. A kinetic model of sugar metabolism in peach fruit reveals a functional hypothesis of a markedly low fructose-to-glucose ratio phenotype.
    Desnoues E; Génard M; Quilot-Turion B; Baldazzi V
    Plant J; 2018 May; 94(4):685-698. PubMed ID: 29543354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Sugar Components and Genes Involved in the Regulation of Sucrose Accumulation in Peach Fruit.
    Vimolmangkang S; Zheng H; Peng Q; Jiang Q; Wang H; Fang T; Liao L; Wang L; He H; Han Y
    J Agric Food Chem; 2016 Sep; 64(35):6723-9. PubMed ID: 27537219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios.
    Desnoues E; Gibon Y; Baldazzi V; Signoret V; Génard M; Quilot-Turion B
    BMC Plant Biol; 2014 Nov; 14():336. PubMed ID: 25421154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms.
    Wang L; Shan T; Xie B; Ling C; Shao S; Jin P; Zheng Y
    Food Chem; 2019 Jan; 272():530-538. PubMed ID: 30309578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development.
    Desnoues E; Baldazzi V; Génard M; Mauroux JB; Lambert P; Confolent C; Quilot-Turion B
    J Exp Bot; 2016 May; 67(11):3419-31. PubMed ID: 27117339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exogenous nitric oxide on contents of soluble sugars and related enzyme activities in 'Feicheng' peach fruit.
    Sun Z; Li Y; Zhou J; Zhu SH
    J Sci Food Agric; 2011 Aug; 91(10):1795-800. PubMed ID: 21681759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing a model of sugar metabolism in peach to catch different patterns among genotypes.
    Kanso H; Quilot-Turion B; Memah MM; Bernard O; Gouzé JL; Baldazzi V
    Math Biosci; 2020 Mar; 321():108321. PubMed ID: 32014417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica).
    Génard M; Lescourret F; Gomez L; Habib R
    Tree Physiol; 2003 Apr; 23(6):373-85. PubMed ID: 12642239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SnRK1 phosphorylation of SDH positively regulates sorbitol metabolism and promotes sugar accumulation in peach fruit.
    Yu W; Peng F; Wang W; Liang J; Xiao Y; Yuan X
    Tree Physiol; 2021 Jun; 41(6):1077-1086. PubMed ID: 33576402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate availability affects growth and metabolism in peach fruit.
    Morandi B; Corelli Grappadelli L; Rieger M; Lo Bianco R
    Physiol Plant; 2008 Jun; 133(2):229-41. PubMed ID: 18298408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Analysis Reveals the Regulatory Role of
    Peng Q; Wang L; Ogutu C; Liu J; Liu L; Mollah MDA; Han Y
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salicylic acid treatment mitigates chilling injury in peach fruit by regulation of sucrose metabolism and soluble sugar content.
    Zhao Y; Song C; Brummell DA; Qi S; Lin Q; Bi J; Duan Y
    Food Chem; 2021 Oct; 358():129867. PubMed ID: 33979685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced expression of a subunit gene of sucrose non-fermenting 1 related kinase, PpSnRK1βγ, confers flat fruit abortion in peach by regulating sugar and starch metabolism.
    Guo J; Cao K; Yao JL; Deng C; Li Y; Zhu G; Fang W; Chen C; Wang X; Wu J; Guo W; Wang L
    BMC Plant Biol; 2021 Feb; 21(1):88. PubMed ID: 33568056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing.
    Li S; Shao Z; Fu X; Xiao W; Li L; Chen M; Sun M; Li D; Gao D
    BMC Genomics; 2017 Dec; 18(1):938. PubMed ID: 29197334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit.
    Cheng R; Cheng Y; Lü J; Chen J; Wang Y; Zhang S; Zhang H
    Physiol Plant; 2018 Nov; 164(3):307-319. PubMed ID: 29603749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.
    Yativ M; Harary I; Wolf S
    J Plant Physiol; 2010 May; 167(8):589-96. PubMed ID: 20036442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome and Metabolome Analyses Reveal Sugar and Acid Accumulation during Apricot Fruit Development.
    Gou N; Chen C; Huang M; Zhang Y; Bai H; Li H; Wang L; Wuyun T
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types.
    Zanon L; Falchi R; Santi S; Vizzotto G
    Physiol Plant; 2015 Jun; 154(2):179-93. PubMed ID: 25348206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar Profile of Kernels as a Marker of Origin and Ripening Time of Peach (Prunus persicae L.).
    Stanojević M; Trifković J; Akšić MF; Rakonjac V; Nikolić D; Šegan S; Milojković-Opsenica D
    Plant Foods Hum Nutr; 2015 Dec; 70(4):433-40. PubMed ID: 26497505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism.
    Zhao H; Jiao W; Cui K; Fan X; Shu C; Zhang W; Cao J; Jiang W
    Food Chem; 2019 Aug; 289():426-435. PubMed ID: 30955633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.