These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of mediators on laccase catalyzed radical formation in lignin. Munk L; Andersen ML; Meyer AS Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016 [TBL] [Abstract][Full Text] [Related]
3. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Munk L; Andersen ML; Meyer AS Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water. Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059 [TBL] [Abstract][Full Text] [Related]
5. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Nadif A; Hunkeler D; Käuper P Bioresour Technol; 2002 Aug; 84(1):49-55. PubMed ID: 12137268 [TBL] [Abstract][Full Text] [Related]
6. Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol. Ihssen J; Jankowska D; Ramsauer T; Reiss R; Luchsinger R; Wiesli L; Schubert M; Thöny-Meyer L; Faccio G Protein Eng Des Sel; 2017 Jun; 30(6):449-453. PubMed ID: 28482039 [TBL] [Abstract][Full Text] [Related]
7. A first report on competitive inhibition of laccase enzyme by lignin degradation intermediates. Pamidipati S; Ahmed A Folia Microbiol (Praha); 2020 Apr; 65(2):431-437. PubMed ID: 31863277 [TBL] [Abstract][Full Text] [Related]
8. Production of spore laccase from Bacillus pumilus W3 and its application in dye decolorization after immobilization. Zhou W; Guan ZB; Chen Y; Zhang F; Cai YJ; Xu CW; Chen XS; Liao XR Water Sci Technol; 2017 Jul; 76(1-2):147-154. PubMed ID: 28708619 [TBL] [Abstract][Full Text] [Related]
9. Comparison of laccase-catalyzed cross-linking of organosolv lignin and lignosulfonates. Gillgren T; Hedenström M; Jönsson LJ Int J Biol Macromol; 2017 Dec; 105(Pt 1):438-446. PubMed ID: 28711620 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Frasconi M; Favero G; Boer H; Koivula A; Mazzei F Biochim Biophys Acta; 2010 Apr; 1804(4):899-908. PubMed ID: 20056172 [TBL] [Abstract][Full Text] [Related]
11. Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Nugroho Prasetyo E; Kudanga T; Østergaard L; Rencoret J; Gutiérrez A; del Río JC; Ignacio Santos J; Nieto L; Jiménez-Barbero J; Martínez AT; Li J; Gellerstedt G; Lepifre S; Silva C; Kim SY; Cavaco-Paulo A; Seljebakken Klausen B; Lutnaes BF; Nyanhongo GS; Guebitz GM Bioresour Technol; 2010 Jul; 101(14):5054-62. PubMed ID: 20176477 [TBL] [Abstract][Full Text] [Related]
12. Chemo-enzymatically prepared lignin nanoparticles for value-added applications. Henn A; Mattinen ML World J Microbiol Biotechnol; 2019 Jul; 35(8):125. PubMed ID: 31363859 [TBL] [Abstract][Full Text] [Related]
13. Whey protein isolate with improved film properties through cross-linking catalyzed by small laccase from Streptomyces coelicolor. Quan W; Zhang C; Zheng M; Lu Z; Lu F J Sci Food Agric; 2018 Aug; 98(10):3843-3850. PubMed ID: 29363791 [TBL] [Abstract][Full Text] [Related]
14. Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism. Euring M; Rühl M; Ritter N; Kües U; Kharazipour A Biotechnol J; 2011 Oct; 6(10):1253-61. PubMed ID: 22081820 [TBL] [Abstract][Full Text] [Related]
15. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Lahtinen M; Kruus K; Heinonen P; Sipilä J J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333 [TBL] [Abstract][Full Text] [Related]
16. Development of a magnetically separable co-immobilized laccase and versatile peroxidase system for the conversion of lignocellulosic biomass to vanillin. Saikia K; Vishnu D; Rathankumar AK; Palanisamy Athiyaman B; Batista-García RA; Folch-Mallol JL; Cabana H; Kumar VV J Air Waste Manag Assoc; 2020 Dec; 70(12):1252-1259. PubMed ID: 32701040 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic-assisted polymerization of the lignin obtained from a macroalgae consortium, using an extracellular laccase-like enzyme (Tg-laccase) from Antúnez-Argüelles E; Herrera-Bulnes M; Torres-Ariño A; Mirón-Enríquez C; Soriano-García M; Robles-Gómez E J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(6):739-747. PubMed ID: 32181694 [TBL] [Abstract][Full Text] [Related]
19. Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes. Du X; Li J; Gellerstedt G; Rencoret J; Del Río JC; Martínez AT; Gutiérrez A Biomacromolecules; 2013 Sep; 14(9):3073-80. PubMed ID: 23841747 [TBL] [Abstract][Full Text] [Related]
20. Oxygen-scavenging coatings and films based on lignosulfonates and laccase. Johansson K; Winestrand S; Johansson C; Järnström L; Jönsson LJ J Biotechnol; 2012 Sep; 161(1):14-8. PubMed ID: 22721759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]