These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 29543425)

  • 41. Polyarylene Ether Nitrile and Barium Titanate Nanocomposite Plasticized by Carboxylated Zinc Phthalocyanine Buffer.
    Liu S; Liu C; Liu C; Tu L; You Y; Wei R; Liu X
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960402
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Compressible Polymer Composites with Enhanced Dielectric Temperature Stability.
    Tang T; Yang W; Shen Z; Wang J; Guo M; Xiao Y; Ren W; Ma J; Yu R; Nan CW; Shen Y
    Adv Mater; 2023 Apr; 35(16):e2209958. PubMed ID: 36693075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ferroelectric barium titanate nanocubes as capacitive building blocks for energy storage applications.
    Parizi SS; Mellinger A; Caruntu G
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17506-17. PubMed ID: 25255863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.
    Wang G; Huang X; Jiang P
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7547-7555. PubMed ID: 28150490
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suppressed polarization by epitaxial growth of SrTiO
    Ma Y; Luo H; Zhou X; Guo R; Dang F; Zhou K; Zhang D
    Nanoscale; 2020 Apr; 12(15):8230-8236. PubMed ID: 32129360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Energy Storage Performance of PMMA Nanocomposites Utilizing Hierarchically Structured Nanowires Based on Interface Engineering.
    Xie B; Wang Q; Zhang Q; Liu Z; Lu J; Zhang H; Jiang S
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27382-27391. PubMed ID: 34081431
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold.
    Yang K; Huang X; Fang L; He J; Jiang P
    Nanoscale; 2014 Dec; 6(24):14740-53. PubMed ID: 25352354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO
    Wang G; Huang Y; Wang Y; Jiang P; Huang X
    Phys Chem Chem Phys; 2017 Aug; 19(31):21058-21068. PubMed ID: 28748238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss.
    Luo S; Yu S; Sun R; Wong CP
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):176-82. PubMed ID: 24320940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Poly(arylene ether nitrile) Composites with Surface-Hydroxylated Calcium Copper Titanate Particles for High-Temperature-Resistant Dielectric Applications.
    Yang J; Tang Z; Yin H; Liu Y; Wang L; Tang H; Li Y
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host-Guest Interface by Phosphonic Acids.
    Wang S; Xu P; Xu X; Kang D; Chen J; Li Z; Huang X
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Significant Improvements in Dielectric Constant and Energy Density of Ferroelectric Polymer Nanocomposites Enabled by Ultralow Contents of Nanofillers.
    Li L; Cheng J; Cheng Y; Han T; Liu Y; Zhou Y; Zhao G; Zhao Y; Xiong C; Dong L; Wang Q
    Adv Mater; 2021 Sep; 33(35):e2102392. PubMed ID: 34302399
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Dielectric Properties of LaNiO
    Jaschin PW; Bhimireddi R; Varma KBR
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27278-27286. PubMed ID: 30048110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dielectric Properties and Energy Storage Densities of Poly(vinylidenefluoride) Nanocomposite with Surface Hydroxylated Cube Shaped Ba
    Liu S; Xiu S; Shen B; Zhai J; Kong LB
    Polymers (Basel); 2016 Feb; 8(2):. PubMed ID: 30979146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BaTiO
    Zhao M; Fu Q; Hou Y; Luo L; Li W
    ACS Omega; 2019 Jan; 4(1):1000-1006. PubMed ID: 31459375
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scalable Polymer Nanocomposites with Record High-Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers.
    Li H; Ai D; Ren L; Yao B; Han Z; Shen Z; Wang J; Chen LQ; Wang Q
    Adv Mater; 2019 Jun; 31(23):e1900875. PubMed ID: 30977229
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of a Three-Dimensional BaTiO
    Bi X; Yang L; Wang Z; Zhan Y; Wang S; Zhang C; Li Y; Miao Y; Zha J
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34198974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites.
    Zhang T; Guo M; Jiang J; Zhang X; Lin Y; Nan CW; Shen Y
    RSC Adv; 2019 Nov; 9(62):35990-35997. PubMed ID: 35540594
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Achieving high performance electric field induced strain: a rational design of hyperbranched aromatic polyamide functionalized graphene-polyurethane dielectric elastomer composites.
    Chen T; Qiu J; Zhu K; Li J; Wang J; Li S; Wang X
    J Phys Chem B; 2015 Mar; 119(12):4521-30. PubMed ID: 25741878
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of Dielectric Performance of Polymer Composites via Constructing BaTiO
    Yang D; Kong X; Ni Y; Xu Y; Huang S; Shang G; Xue H; Guo W; Zhang L
    ACS Omega; 2018 Oct; 3(10):14087-14096. PubMed ID: 31458101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.