These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29543445)

  • 1. Predicting Dermal Exposure to Gas-Phase Semivolatile Organic Compounds (SVOCs): A Further Study of SVOC Mass Transfer between Clothing and Skin Surface Lipids.
    Cao J; Zhang X; Zhang Y
    Environ Sci Technol; 2018 Apr; 52(8):4676-4683. PubMed ID: 29543445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SVOC exposure indoors: fresh look at dermal pathways.
    Weschler CJ; Nazaroff WW
    Indoor Air; 2012 Oct; 22(5):356-77. PubMed ID: 22313149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPME-Based C
    Cao J; Liu N; Zhang Y
    Environ Sci Technol; 2017 Aug; 51(16):9137-9145. PubMed ID: 28714305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dermal uptake directly from air under transient conditions: advances in modeling and comparisons with experimental results for human subjects.
    Morrison GC; Weschler CJ; Bekö G
    Indoor Air; 2016 Dec; 26(6):913-924. PubMed ID: 26718287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling clothing as a secondary source of exposure to SVOCs across indoor microenvironments.
    Kvasnicka J; Cohen Hubal EA; Diamond ML
    J Expo Sci Environ Epidemiol; 2024 Mar; 34(2):376-385. PubMed ID: 38129669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeled exposure assessment via inhalation and dermal pathways to airborne semivolatile organic compounds (SVOCs) in residences.
    Shi S; Zhao B
    Environ Sci Technol; 2014 May; 48(10):5691-9. PubMed ID: 24730560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of clothing in both accelerating and impeding dermal absorption of airborne SVOCs.
    Morrison GC; Weschler CJ; Bekö G; Koch HM; Salthammer T; Schripp T; Toftum J; Clausen G
    J Expo Sci Environ Epidemiol; 2016; 26(1):113-8. PubMed ID: 26058800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas-Particle Partitioning of Semivolatile Organic Compounds in a Residence: Influence of Particles from Candles, Cooking, and Outdoors.
    Kristensen K; Lunderberg DM; Liu Y; Misztal PK; Tian Y; Arata C; Nazaroff WW; Goldstein AH
    Environ Sci Technol; 2023 Feb; 57(8):3260-3269. PubMed ID: 36796310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong temperature influence and indiscernible ventilation effect on dynamics of some semivolatile organic compounds in the indoor air of an office.
    Li Y; He L; Xie D; Zhao A; Wang L; Kreisberg NM; Jayne J; Liu Y
    Environ Int; 2022 Jul; 165():107305. PubMed ID: 35635961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification.
    Weschler CJ; Bekö G; Koch HM; Salthammer T; Schripp T; Toftum J; Clausen G
    Environ Health Perspect; 2015 Oct; 123(10):928-34. PubMed ID: 25850107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dermal absorption of semivolatile organic compounds from the gas phase: Sensitivity of exposure assessment by steady state modeling to key parameters.
    Pelletier M; Bonvallot N; Ramalho O; Blanchard O; Mercier F; Mandin C; Le Bot B; Glorennec P
    Environ Int; 2017 May; 102():106-113. PubMed ID: 28249739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment.
    Little JC; Weschler CJ; Nazaroff WW; Liu Z; Cohen Hubal EA
    Environ Sci Technol; 2012 Oct; 46(20):11171-8. PubMed ID: 22856628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the rate constants of semivolatile organic compounds with hydroxyl radicals and ozone in indoor air.
    Wei W; Sivanantham S; Malingre L; Ramalho O; Mandin C
    Environ Pollut; 2020 Nov; 266(Pt 2):115050. PubMed ID: 32652384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of indoor environmental factors on mass transfer parameters and concentrations of semi-volatile organic compounds.
    Wei W; Mandin C; Ramalho O
    Chemosphere; 2018 Mar; 195():223-235. PubMed ID: 29268180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of ventilation on indoor exposure to semivolatile organic compounds.
    Liu C; Zhang Y; Benning JL; Little JC
    Indoor Air; 2015 Jun; 25(3):285-96. PubMed ID: 24939666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. C(m)-History Method, a Novel Approach to Simultaneously Measure Source and Sink Parameters Important for Estimating Indoor Exposures to Phthalates.
    Cao J; Weschler CJ; Luo J; Zhang Y
    Environ Sci Technol; 2016 Jan; 50(2):825-34. PubMed ID: 26677723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of Phthalates on Impervious Indoor Surfaces.
    Wu Y; Eichler CM; Leng W; Cox SS; Marr LC; Little JC
    Environ Sci Technol; 2017 Mar; 51(5):2907-2913. PubMed ID: 28140579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiologically based pharmacokinetic model for the transdermal uptake of semivolatile organic compounds from the atmosphere and through clothing.
    Simon L; Biswas A
    J Occup Environ Hyg; 2024 Nov; 21(11):778-787. PubMed ID: 39357064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of organic films on indoor surfaces.
    Weschler CJ; Nazaroff WW
    Indoor Air; 2017 Nov; 27(6):1101-1112. PubMed ID: 28556424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of residential air cleaning interventions on risk of cancer associated with indoor semi-volatile organic compounds: a comprehensive simulation study.
    Shi S; Zhao B; Zhang JJ
    Lancet Planet Health; 2018 Dec; 2(12):e532-e539. PubMed ID: 30526939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.