BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29543452)

  • 1. Assessing Many-Body Effects of Water Self-Ions. I: OH
    Egan CK; Paesani F
    J Chem Theory Comput; 2018 Apr; 14(4):1982-1997. PubMed ID: 29543452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Many-Body Effects of Water Self-Ions. II: H
    Egan CK; Paesani F
    J Chem Theory Comput; 2019 Sep; 15(9):4816-4833. PubMed ID: 31345030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of Halide-Water Interactions: Insights from Many-Body Representations and Density Functional Theory.
    Bizzarro BB; Egan CK; Paesani F
    J Chem Theory Comput; 2019 May; 15(5):2983-2995. PubMed ID: 30913392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Density Functional Theory in Predicting Interaction Energies between Water and Polycyclic Aromatic Hydrocarbons: from Water on Benzene to Water on Graphene.
    Ajala AO; Voora V; Mardirossian N; Furche F; Paesani F
    J Chem Theory Comput; 2019 Apr; 15(4):2359-2374. PubMed ID: 30860827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.
    Cobar EA; Horn PR; Bergman RG; Head-Gordon M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15328-39. PubMed ID: 23052011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmark Structures and Harmonic Vibrational Frequencies Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H2O)n = 2, 3, 4, 5, 6.
    Howard JC; Tschumper GS
    J Chem Theory Comput; 2015 May; 11(5):2126-36. PubMed ID: 26574415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aiming for benchmark accuracy with the many-body expansion.
    Richard RM; Lao KU; Herbert JM
    Acc Chem Res; 2014 Sep; 47(9):2828-36. PubMed ID: 24883986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural energy decomposition analysis: extension to density functional methods and analysis of cooperative effects in water clusters.
    Glendening ED
    J Phys Chem A; 2005 Dec; 109(51):11936-40. PubMed ID: 16366646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT study on X⁻·(H₂O)(n=1-10) (X=OH, NO₂, NO₃, CO₃) anionic water cluster.
    Lalitha M; Senthilkumar L
    J Mol Graph Model; 2014 Nov; 54():148-63. PubMed ID: 25459767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Non-Covalent Interactions: Correlated Energy Decomposition Analysis and Applications to Halogen Bonding.
    Gonthier JF; Thirman J; Head-Gordon M
    Chimia (Aarau); 2018 Apr; 72(4):193-198. PubMed ID: 29720307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration.
    Soniat M; Rogers DM; Rempe SB
    J Chem Theory Comput; 2015 Jul; 11(7):2958-67. PubMed ID: 26575733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the rich energy landscape of sulfate-water clusters SO4(2-) (H2O)(n=3-7): an electronic structure approach.
    Lambrecht DS; Clark GN; Head-Gordon T; Head-Gordon M
    J Phys Chem A; 2011 Oct; 115(41):11438-54. PubMed ID: 21888323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative roles of charge transfer and dispersion terms in hydrogen-bonded networks of (H2O)n, n = 6, 11, and 16.
    Iwata S; Bandyopadhyay P; Xantheas SS
    J Phys Chem A; 2013 Aug; 117(30):6641-51. PubMed ID: 23805893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations.
    Demerdash O; Mao Y; Liu T; Head-Gordon M; Head-Gordon T
    J Chem Phys; 2017 Oct; 147(16):161721. PubMed ID: 29096520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the structure, stability, and spectral signatures of hydride ion-water clusters.
    Prakash M; Gopalsamy K; Subramanian V
    J Chem Phys; 2011 Dec; 135(21):214308. PubMed ID: 22149793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy decomposition scheme based on the generalized Kohn-Sham scheme.
    Su P; Jiang Z; Chen Z; Wu W
    J Phys Chem A; 2014 Apr; 118(13):2531-42. PubMed ID: 24611964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals.
    Horn PR; Mao Y; Head-Gordon M
    Phys Chem Chem Phys; 2016 Aug; 18(33):23067-79. PubMed ID: 27492057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-body decomposition of the binding energies for OH.(H2O)2 and OH.(H2O)3 complexes.
    Du S; Francisco JS; Schenter GK; Garrett BC
    J Chem Phys; 2008 Feb; 128(8):084307. PubMed ID: 18315046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the performance of common density functional methods for describing the interaction energies of (H2O)6 clusters.
    Wang FF; Jenness G; Al-Saidi WA; Jordan KD
    J Chem Phys; 2010 Apr; 132(13):134303. PubMed ID: 20387929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a 3-body:many-body integrated fragmentation method for weakly bound clusters and application to water clusters (H2O)(n = 3-10, 16, 17).
    Bates DM; Smith JR; Janowski T; Tschumper GS
    J Chem Phys; 2011 Jul; 135(4):044123. PubMed ID: 21806106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.