These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29543728)

  • 21. Model fitting in two dimensions to small angle diffraction patterns from soft tissue.
    Wilkinson SJ; Rogers KD; Hall CJ
    Phys Med Biol; 2006 Apr; 51(7):1819-30. PubMed ID: 16552107
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating nanoscale deformation in bone by X-ray diffraction imaging method.
    Tadano S; Giri B; Sato T; Fujisaki K; Todoh M
    J Biomech; 2008; 41(5):945-52. PubMed ID: 18291405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accuracy of stress measurement by Laue microdiffraction (Laue-DIC method): the influence of image noise, calibration errors and spot number.
    Zhang FG; Bornert M; Petit J; Castelnau O
    J Synchrotron Radiat; 2017 Jul; 24(Pt 4):802-817. PubMed ID: 28664888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of strain measurement in the mouse forearm using subject-specific finite element models, strain gaging, and digital image correlation.
    Begonia M; Dallas M; Johnson ML; Thiagarajan G
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1243-1253. PubMed ID: 28204985
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Implementation of the Fundamental Parameters Approach for Analysis of X-ray Powder Diffraction Line Profiles.
    Mendenhall MH; Mullen K; Cline JP
    J Res Natl Inst Stand Technol; 2015; 120():223-51. PubMed ID: 26958448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulating Powder X-ray Diffraction Patterns of Two-Dimensional Materials.
    Jiang Y; Cao L; Hu X; Ren Z; Zhang C; Wang C
    Inorg Chem; 2018 Dec; 57(24):15123-15132. PubMed ID: 30485087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of elastic strain by integrated image correlation on electron diffraction patterns.
    Shi Q; Roux S; Latourte F; Hild F
    Ultramicroscopy; 2019 Apr; 199():16-33. PubMed ID: 30738984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Powder X-ray diffraction detection on a paper-based platform.
    Ouyang L; Liu Q; Xu C; Liu C; Liang H
    Talanta; 2017 Mar; 164():283-290. PubMed ID: 28107931
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the Surface Residual Stress Measurement in Magnesium Alloys Using X-Ray Diffraction.
    Yazdanmehr A; Jahed H
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33212922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure Determination of Er Doped Ti-Al-Nb Alloy by Neutron Diffraction Analysis.
    Ke Y; Tao J; Duan H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31336835
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Komar P; Jakob G
    J Appl Crystallogr; 2017 Feb; 50(Pt 1):288-292. PubMed ID: 28190993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Convolutional Neural Networks to Assist the Assessment of Lattice Parameters from X-ray Powder Diffraction.
    Gómez-Peralta JI; Bokhimi X; Quintana P
    J Phys Chem A; 2023 Sep; 127(36):7655-7664. PubMed ID: 37647548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction.
    Zeuschner SP; Mattern M; Pudell JE; von Reppert A; Rössle M; Leitenberger W; Schwarzkopf J; Boschker JE; Herzog M; Bargheer M
    Struct Dyn; 2021 Jan; 8(1):014302. PubMed ID: 33532514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale measurements with adjustable x-ray spot size for in situ imaging and diffraction.
    Li SY; Zhang YY; Zhang NB; Xie HL; Fan D; Luo SN; Lu L; Chen S
    Rev Sci Instrum; 2021 Mar; 92(3):033108. PubMed ID: 33820081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The High Resolution Powder Diffraction Beam Line at ESRF.
    Fitch AN
    J Res Natl Inst Stand Technol; 2004; 109(1):133-142. PubMed ID: 27366602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-field strain distribution in multi-vertebra spine segments: An in vitro application of digital image correlation.
    Palanca M; Marco M; Ruspi ML; Cristofolini L
    Med Eng Phys; 2018 Feb; 52():76-83. PubMed ID: 29229402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Next-generation 2D optical strain mapping with strain-sensing smart skin compared to digital image correlation.
    Meng W; Pal A; Bachilo SM; Weisman RB; Nagarajaiah S
    Sci Rep; 2022 Jul; 12(1):11226. PubMed ID: 35781288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Digital Image Correlation of Forescatter Detector Images for Simultaneous Strain and Orientation Mapping.
    Adams D; Irfan S; Cramer J; Miles MP; Homer ER; Brown T; Mishra RK; Fullwood DT
    Microsc Microanal; 2020 Aug; 26(4):641-652. PubMed ID: 32627724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction.
    Britton TB; Wilkinson AJ
    Ultramicroscopy; 2011 Jul; 111(8):1395-404. PubMed ID: 21864783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digital image correlation as a tool for three-dimensional strain analysis in human tendon tissue.
    Luyckx T; Verstraete M; De Roo K; De Waele W; Bellemans J; Victor J
    J Exp Orthop; 2014 Dec; 1(1):7. PubMed ID: 26914752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.