These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29543733)

  • 1. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.
    Li T; Wang S; Zio E; Shi J; Hong W
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29543733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Impedance Micro-Sensor for Metal Debris Monitoring of Hydraulic Oil.
    Zhang H; Shi H; Li W; Ma L; Zhao X; Xu Z; Wang C; Xie Y; Zhang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Influence of Coil LC Parallel Resonance on Detection Effect of Inductive Wear Debris Sensor.
    Huang H; He S; Xie X; Feng W; Zhen H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris.
    Davidson JA; Poggie RA; Mishra AK
    Biomed Mater Eng; 1994; 4(3):213-29. PubMed ID: 7950870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Correlation Algorithm-Based Optimization of Aliasing Signals for Inductive Debris Sensors.
    Wang X; Sun H; Wang S; Huang W
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Sensitivity of a Micro Inductive Sensor for Wear Debris Detection with Magnetic Powder Surrounded.
    Liu L; Chen L; Wang S; Yin Y; Liu D; Wu S; Liu Z; Pan X
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31266180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An online debris sensor system with vibration resistance for lubrication analysis.
    Ding Y; Wang Y; Xiang J
    Rev Sci Instrum; 2016 Feb; 87(2):025109. PubMed ID: 26931893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abrasive Wear Resistance of Plasma-Nitrided Ti Enhanced by Ultrasonic Surface Rolling Processing Pre-Treatment.
    She D; Liu S; Kang J; Yue W; Zhu L; Wang C; Wang H; Ma G; Zhong L
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31590454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault Diagnosis for Abnormal Wear of Rolling Element Bearing Fusing Oil Debris Monitoring.
    Zhao Y; Wang X; Han S; Lin J; Han Q
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Inductive Debris Sensor Based on Dual-Excitation Coils and Dual-Sensing Coils for Online Debris Monitoring.
    Wu X; Zhang Y; Li N; Qian Z; Liu D; Qian Z; Zhang C
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.
    Wang Z; Huang W; Ma Y
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():211-8. PubMed ID: 25063112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Permanent Magnet Ferromagnetic Wear Debris Sensor Based on Axisymmetric High-Gradient Magnetic Field.
    Fan B; Liu Y; Zhang P; Wang L; Zhang C; Wang J
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors.
    Zeng L; Zhang H; Wang Q; Zhang X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the Effect of Debris Position on the Detection Stability of a Magnetic Plug Sensor Based on Alternating Current Bridge.
    Zhang S; Xie Y; Zhang L; Zhang Y; Zhang S; Bai C; Li W
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Ferrogram Segmentation of Wear Debris Using Multi-Level Feature Reused Unet.
    You J; Fan S; Yu Q; Wang L; Zhang Z; Zong Z
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of Wear Debris and Its Action Mechanism on the Tribological Properties of Medium-Carbon Steel with Magnetic Field.
    Shi H; Du S; Sun C; Song C; Yang Z; Zhang Y
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of Simultaneous Friction and Corrosive Processes in the Presence of Abrasive Particles.
    Tyczewski P; Nadolny K; Zwierzycki W; Ulbrich D
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Particle Breakage Effect on Abrasive Wear Process of Rubber/Steel Seal Pairs under High/Low Pressure.
    Zhou Z; Zhou Q; Qin K; Li S; Zhang K; Yuan T; Sun W
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Analysis for Appropriate Positioning of Ferrous Wear Debris Sensors with Permanent Magnet in Gearbox Systems.
    Hong SH
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on Wear Mechanism of Helical Gear by Three-Body Abrasive Based on Impact Load.
    Yuan W; Wang H; Guo Q; Wang W; Zhu Y; Yu J; Yang X
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.